TEST5
Browse files- Dockerfile +23 -0
- app.py +347 -0
- requirements.txt +6 -0
Dockerfile
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.10-slim
|
2 |
+
|
3 |
+
# Install dependencies for poppler (used by pdf2image)
|
4 |
+
RUN apt-get update && \
|
5 |
+
apt-get install -y poppler-utils libglib2.0-0 libsm6 libxext6 libxrender-dev && \
|
6 |
+
apt-get clean && \
|
7 |
+
rm -rf /var/lib/apt/lists/*
|
8 |
+
|
9 |
+
# Set working directory
|
10 |
+
WORKDIR /app
|
11 |
+
|
12 |
+
# Copy requirements and install
|
13 |
+
COPY requirements.txt .
|
14 |
+
RUN pip install --no-cache-dir --upgrade pip && pip install --no-cache-dir -r requirements.txt
|
15 |
+
|
16 |
+
# Copy app files
|
17 |
+
COPY . .
|
18 |
+
|
19 |
+
# Expose port (default Gradio port is 7860)
|
20 |
+
EXPOSE 7860
|
21 |
+
|
22 |
+
# Run Gradio app
|
23 |
+
CMD ["python", "app.py"]
|
app.py
ADDED
@@ -0,0 +1,347 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import io
|
2 |
+
import os
|
3 |
+
import tempfile
|
4 |
+
import time
|
5 |
+
import uuid
|
6 |
+
|
7 |
+
import cv2
|
8 |
+
import gradio as gr
|
9 |
+
import pymupdf
|
10 |
+
import spaces
|
11 |
+
import torch
|
12 |
+
from loguru import logger
|
13 |
+
from PIL import Image
|
14 |
+
from transformers import AutoProcessor, VisionEncoderDecoderModel
|
15 |
+
|
16 |
+
# --- Assumed to be in 'utils/utils.py' ---
|
17 |
+
# The following utility functions are required from your original project structure.
|
18 |
+
# Ensure you have the 'utils.py' file with these functions.
|
19 |
+
# Example placeholder for what these functions might do:
|
20 |
+
try:
|
21 |
+
from utils.utils import prepare_image, parse_layout_string, process_coordinates
|
22 |
+
except ImportError:
|
23 |
+
logger.error("Could not import from 'utils.utils'. Please ensure utils.py is in the correct path.")
|
24 |
+
# Define dummy functions to allow the script to load, but it will fail at runtime.
|
25 |
+
def prepare_image(image): return image, None
|
26 |
+
def parse_layout_string(s): return []
|
27 |
+
def process_coordinates(bbox, img, dims, prev_box): return 0,0,0,0,0,0,0,0,None
|
28 |
+
# -----------------------------------------
|
29 |
+
|
30 |
+
|
31 |
+
# --- Global Variables ---
|
32 |
+
model = None
|
33 |
+
processor = None
|
34 |
+
tokenizer = None
|
35 |
+
|
36 |
+
|
37 |
+
@spaces.GPU
|
38 |
+
def initialize_model():
|
39 |
+
"""Initializes the Hugging Face model and processor."""
|
40 |
+
global model, processor, tokenizer
|
41 |
+
|
42 |
+
if model is None:
|
43 |
+
logger.info("Loading DOLPHIN model for PDF to JSON conversion...")
|
44 |
+
model_id = "ByteDance/Dolphin"
|
45 |
+
|
46 |
+
try:
|
47 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
48 |
+
model = VisionEncoderDecoderModel.from_pretrained(model_id)
|
49 |
+
|
50 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
51 |
+
model.to(device)
|
52 |
+
# Use half-precision for better performance if on CUDA
|
53 |
+
if device == "cuda":
|
54 |
+
model = model.half()
|
55 |
+
|
56 |
+
model.eval()
|
57 |
+
tokenizer = processor.tokenizer
|
58 |
+
logger.info(f"Model loaded successfully on {device}")
|
59 |
+
except Exception as e:
|
60 |
+
logger.error(f"Fatal error during model initialization: {e}")
|
61 |
+
raise
|
62 |
+
|
63 |
+
|
64 |
+
@spaces.GPU
|
65 |
+
def model_inference(prompt, image):
|
66 |
+
"""
|
67 |
+
Performs inference using the Dolphin model. Handles both single and batch processing.
|
68 |
+
"""
|
69 |
+
global model, processor, tokenizer
|
70 |
+
|
71 |
+
if model is None:
|
72 |
+
logger.warning("Model not initialized. Initializing now...")
|
73 |
+
initialize_model()
|
74 |
+
|
75 |
+
is_batch = isinstance(image, list)
|
76 |
+
images = image if is_batch else [image]
|
77 |
+
prompts = prompt if isinstance(prompt, list) else [prompt] * len(images)
|
78 |
+
|
79 |
+
device = model.device
|
80 |
+
|
81 |
+
# Prepare image tensors
|
82 |
+
batch_inputs = processor(images, return_tensors="pt", padding=True)
|
83 |
+
pixel_values_dtype = torch.float16 if device == "cuda" else torch.float32
|
84 |
+
batch_pixel_values = batch_inputs.pixel_values.to(device, dtype=pixel_values_dtype)
|
85 |
+
|
86 |
+
# Prepare prompt tensors
|
87 |
+
prompts_with_task = [f"<s>{p} <Answer/>" for p in prompts]
|
88 |
+
batch_prompt_inputs = tokenizer(
|
89 |
+
prompts_with_task, add_special_tokens=False, return_tensors="pt"
|
90 |
+
)
|
91 |
+
batch_prompt_ids = batch_prompt_inputs.input_ids.to(device)
|
92 |
+
batch_attention_mask = batch_prompt_inputs.attention_mask.to(device)
|
93 |
+
|
94 |
+
# Generate text sequences
|
95 |
+
outputs = model.generate(
|
96 |
+
pixel_values=batch_pixel_values,
|
97 |
+
decoder_input_ids=batch_prompt_ids,
|
98 |
+
decoder_attention_mask=batch_attention_mask,
|
99 |
+
max_length=4096,
|
100 |
+
pad_token_id=tokenizer.pad_token_id,
|
101 |
+
eos_token_id=tokenizer.eos_token_id,
|
102 |
+
use_cache=True,
|
103 |
+
bad_words_ids=[[tokenizer.unk_token_id]],
|
104 |
+
return_dict_in_generate=True,
|
105 |
+
)
|
106 |
+
|
107 |
+
# Decode and clean up the output
|
108 |
+
sequences = tokenizer.batch_decode(outputs.sequences, skip_special_tokens=False)
|
109 |
+
results = [
|
110 |
+
seq.replace(prompts_with_task[i], "").replace("<pad>", "").replace("</s>", "").strip()
|
111 |
+
for i, seq in enumerate(sequences)
|
112 |
+
]
|
113 |
+
|
114 |
+
return results[0] if not is_batch else results
|
115 |
+
|
116 |
+
|
117 |
+
@spaces.GPU
|
118 |
+
def process_element_batch(elements, prompt, max_batch_size=16):
|
119 |
+
"""Processes a batch of elements of the same type (e.g., text or tables)."""
|
120 |
+
results = []
|
121 |
+
for i in range(0, len(elements), max_batch_size):
|
122 |
+
batch_elements = elements[i:i + max_batch_size]
|
123 |
+
crops_list = [elem["crop"] for elem in batch_elements]
|
124 |
+
prompts_list = [prompt] * len(crops_list)
|
125 |
+
|
126 |
+
batch_results = model_inference(prompts_list, crops_list)
|
127 |
+
|
128 |
+
for j, result in enumerate(batch_results):
|
129 |
+
elem = batch_elements[j]
|
130 |
+
results.append({
|
131 |
+
"label": elem["label"],
|
132 |
+
"bbox": elem["bbox"],
|
133 |
+
"text": result.strip(),
|
134 |
+
"reading_order": elem["reading_order"],
|
135 |
+
})
|
136 |
+
return results
|
137 |
+
|
138 |
+
|
139 |
+
def convert_all_pdf_pages_to_images(file_path, target_size=896):
|
140 |
+
"""Converts all pages of a PDF file to a list of image file paths."""
|
141 |
+
if not file_path or not file_path.lower().endswith('.pdf'):
|
142 |
+
logger.warning("Not a PDF file. No pages to convert.")
|
143 |
+
return []
|
144 |
+
|
145 |
+
image_paths = []
|
146 |
+
try:
|
147 |
+
doc = pymupdf.open(file_path)
|
148 |
+
for page_num in range(len(doc)):
|
149 |
+
page = doc[page_num]
|
150 |
+
scale = target_size / max(page.rect.width, page.rect.height)
|
151 |
+
mat = pymupdf.Matrix(scale, scale)
|
152 |
+
pix = page.get_pixmap(matrix=mat)
|
153 |
+
|
154 |
+
img_data = pix.tobytes("png")
|
155 |
+
pil_image = Image.open(io.BytesIO(img_data))
|
156 |
+
|
157 |
+
# Use a unique filename for each temporary page image
|
158 |
+
with tempfile.NamedTemporaryFile(suffix=f"_page_{page_num+1}.png", delete=False) as tmp_file:
|
159 |
+
pil_image.save(tmp_file.name, "PNG")
|
160 |
+
image_paths.append(tmp_file.name)
|
161 |
+
doc.close()
|
162 |
+
except Exception as e:
|
163 |
+
logger.error(f"Error converting PDF pages to images: {e}")
|
164 |
+
# Clean up any files that were created before the error
|
165 |
+
for path in image_paths:
|
166 |
+
cleanup_temp_file(path)
|
167 |
+
return []
|
168 |
+
|
169 |
+
return image_paths
|
170 |
+
|
171 |
+
|
172 |
+
def process_elements(layout_results, padded_image, dims):
|
173 |
+
"""Crops and recognizes content for all document elements found in the layout."""
|
174 |
+
layout_results = parse_layout_string(layout_results)
|
175 |
+
text_elements, table_elements, figure_results = [], [], []
|
176 |
+
reading_order = 0
|
177 |
+
previous_box = None
|
178 |
+
|
179 |
+
for bbox, label in layout_results:
|
180 |
+
try:
|
181 |
+
x1, y1, x2, y2, orig_x1, orig_y1, orig_x2, orig_y2, previous_box = process_coordinates(
|
182 |
+
bbox, padded_image, dims, previous_box
|
183 |
+
)
|
184 |
+
cropped = padded_image[y1:y2, x1:x2]
|
185 |
+
|
186 |
+
if cropped.size > 0 and (cropped.shape[0] > 3 and cropped.shape[1] > 3):
|
187 |
+
pil_crop = Image.fromarray(cv2.cvtColor(cropped, cv2.COLOR_BGR2RGB))
|
188 |
+
element_info = {
|
189 |
+
"crop": pil_crop, "label": label,
|
190 |
+
"bbox": [orig_x1, orig_y1, orig_x2, orig_y2],
|
191 |
+
"reading_order": reading_order,
|
192 |
+
}
|
193 |
+
if label == "tab":
|
194 |
+
table_elements.append(element_info)
|
195 |
+
elif label == "fig":
|
196 |
+
figure_results.append({**element_info, "text": "[FIGURE]"}) # Placeholder for figures
|
197 |
+
else:
|
198 |
+
text_elements.append(element_info)
|
199 |
+
reading_order += 1
|
200 |
+
except Exception as e:
|
201 |
+
logger.error(f"Error processing element with label {label}: {str(e)}")
|
202 |
+
continue
|
203 |
+
|
204 |
+
recognition_results = figure_results.copy()
|
205 |
+
if text_elements:
|
206 |
+
recognition_results.extend(process_element_batch(text_elements, "Read text in the image."))
|
207 |
+
if table_elements:
|
208 |
+
recognition_results.extend(process_element_batch(table_elements, "Parse the table in the image."))
|
209 |
+
|
210 |
+
recognition_results.sort(key=lambda x: x.get("reading_order", 0))
|
211 |
+
# Remove the temporary 'crop' key before returning JSON
|
212 |
+
for res in recognition_results:
|
213 |
+
res.pop('crop', None)
|
214 |
+
|
215 |
+
return recognition_results
|
216 |
+
|
217 |
+
|
218 |
+
def process_page(image_path):
|
219 |
+
"""Processes a single page image to extract all content and return structured data."""
|
220 |
+
pil_image = Image.open(image_path).convert("RGB")
|
221 |
+
|
222 |
+
# 1. Get layout and reading order
|
223 |
+
layout_output = model_inference("Parse the reading order of this document.", pil_image)
|
224 |
+
|
225 |
+
# 2. Extract content from each element
|
226 |
+
padded_image, dims = prepare_image(pil_image)
|
227 |
+
recognition_results = process_elements(layout_output, padded_image, dims)
|
228 |
+
|
229 |
+
return recognition_results
|
230 |
+
|
231 |
+
|
232 |
+
def cleanup_temp_file(file_path):
|
233 |
+
"""Safely deletes a temporary file if it exists."""
|
234 |
+
try:
|
235 |
+
if file_path and os.path.exists(file_path):
|
236 |
+
os.unlink(file_path)
|
237 |
+
except Exception as e:
|
238 |
+
logger.warning(f"Failed to cleanup temp file {file_path}: {e}")
|
239 |
+
|
240 |
+
|
241 |
+
@spaces.GPU(duration=120)
|
242 |
+
def pdf_to_json_converter(pdf_file):
|
243 |
+
"""
|
244 |
+
Main function for the Gradio interface. Takes a PDF file, processes all pages,
|
245 |
+
and returns the structured data as a JSON object.
|
246 |
+
"""
|
247 |
+
if pdf_file is None:
|
248 |
+
return {"error": "No file uploaded. Please upload a PDF file."}
|
249 |
+
|
250 |
+
start_time = time.time()
|
251 |
+
file_path = pdf_file.name
|
252 |
+
temp_files_created = []
|
253 |
+
|
254 |
+
try:
|
255 |
+
logger.info(f"Starting processing for document: {os.path.basename(file_path)}")
|
256 |
+
|
257 |
+
# Convert all PDF pages to images
|
258 |
+
image_paths = convert_all_pdf_pages_to_images(file_path)
|
259 |
+
if not image_paths:
|
260 |
+
raise Exception("Failed to convert PDF to images. The file might be corrupted or not a valid PDF.")
|
261 |
+
temp_files_created.extend(image_paths)
|
262 |
+
|
263 |
+
all_pages_data = []
|
264 |
+
# Process each page sequentially
|
265 |
+
for page_idx, image_path in enumerate(image_paths):
|
266 |
+
logger.info(f"Processing page {page_idx + 1}/{len(image_paths)}")
|
267 |
+
page_elements = process_page(image_path)
|
268 |
+
all_pages_data.append({
|
269 |
+
"page": page_idx + 1,
|
270 |
+
"elements": page_elements,
|
271 |
+
})
|
272 |
+
|
273 |
+
processing_time = time.time() - start_time
|
274 |
+
logger.info(f"Document processed successfully in {processing_time:.2f}s")
|
275 |
+
|
276 |
+
# Final JSON output structure
|
277 |
+
final_json = {
|
278 |
+
"document_info": {
|
279 |
+
"file_name": os.path.basename(file_path),
|
280 |
+
"total_pages": len(image_paths),
|
281 |
+
"processing_time_seconds": round(processing_time, 2),
|
282 |
+
},
|
283 |
+
"pages": all_pages_data
|
284 |
+
}
|
285 |
+
return final_json
|
286 |
+
|
287 |
+
except Exception as e:
|
288 |
+
logger.error(f"An error occurred during document processing: {str(e)}")
|
289 |
+
return {"error": str(e), "file_name": os.path.basename(file_path)}
|
290 |
+
|
291 |
+
finally:
|
292 |
+
# Cleanup all temporary image files created during processing
|
293 |
+
logger.info("Cleaning up temporary files...")
|
294 |
+
for temp_file in temp_files_created:
|
295 |
+
cleanup_temp_file(temp_file)
|
296 |
+
|
297 |
+
|
298 |
+
# --- Gradio UI ---
|
299 |
+
def build_gradio_interface():
|
300 |
+
"""Builds and returns the simple Gradio UI."""
|
301 |
+
with gr.Blocks(title="PDF to JSON Converter") as demo:
|
302 |
+
gr.Markdown(
|
303 |
+
"""
|
304 |
+
# PDF to JSON Converter
|
305 |
+
Upload a multi-page PDF to extract its content into a structured JSON format using the Dolphin model.
|
306 |
+
"""
|
307 |
+
)
|
308 |
+
|
309 |
+
with gr.Row():
|
310 |
+
with gr.Column(scale=1):
|
311 |
+
pdf_input = gr.File(
|
312 |
+
label="Upload PDF File",
|
313 |
+
file_types=[".pdf"],
|
314 |
+
)
|
315 |
+
submit_btn = gr.Button("Convert to JSON", variant="primary")
|
316 |
+
|
317 |
+
with gr.Column(scale=2):
|
318 |
+
json_output = gr.JSON(label="JSON Output", scale=2)
|
319 |
+
|
320 |
+
submit_btn.click(
|
321 |
+
fn=pdf_to_json_converter,
|
322 |
+
inputs=[pdf_input],
|
323 |
+
outputs=[json_output],
|
324 |
+
)
|
325 |
+
|
326 |
+
# Add a clear button for convenience
|
327 |
+
clear_btn = gr.ClearButton(
|
328 |
+
value="Clear",
|
329 |
+
components=[pdf_input, json_output]
|
330 |
+
)
|
331 |
+
|
332 |
+
return demo
|
333 |
+
|
334 |
+
|
335 |
+
# --- Main Execution ---
|
336 |
+
if __name__ == "__main__":
|
337 |
+
logger.info("Starting Gradio application...")
|
338 |
+
try:
|
339 |
+
# Initialize the model on startup to avoid delays on the first request
|
340 |
+
initialize_model()
|
341 |
+
|
342 |
+
# Build and launch the Gradio interface
|
343 |
+
app_ui = build_gradio_interface()
|
344 |
+
app_ui.launch()
|
345 |
+
|
346 |
+
except Exception as main_exception:
|
347 |
+
logger.error(f"Failed to start the application: {main_exception}")
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch>=2.6.0
|
2 |
+
transformers
|
3 |
+
pdf2image
|
4 |
+
Pillow
|
5 |
+
gradio
|
6 |
+
sentencepiece
|