Maaroufabousaleh
f
c49b21b
import os
from pathlib import Path
import pandas as pd
try:
from src.config import DATA_DIR as CFG_DATA_DIR
except Exception:
try:
from config import DATA_DIR as CFG_DATA_DIR
except Exception:
CFG_DATA_DIR = "/data"
def _resolve_under_data(path_like: str | os.PathLike) -> Path:
p = Path(path_like)
if p.is_absolute():
return p
parts = p.parts
if parts and parts[0].lower() == "data":
rel = Path(*parts[1:]) if len(parts) > 1 else Path()
else:
rel = p
return Path(CFG_DATA_DIR) / rel
def add_sentiment_to_features(features_path, output_path, sentiment_data):
# Resolve paths under DATA_DIR
features_path = _resolve_under_data(features_path)
output_path = _resolve_under_data(output_path)
# Load features
features_df = pd.read_parquet(features_path)
# Load newest sentiment data for all symbols from ownership directory under DATA_DIR
ownership_dir = Path(CFG_DATA_DIR) / 'finnhub' / 'ownership'
import glob
sentiment_files = glob.glob(os.path.join(str(ownership_dir), '*_insider_sentiment.parquet'))
newest_rows = []
for file in sentiment_files:
df = pd.read_parquet(file)
# If file has a 'data' column, expand it
if 'data' in df.columns:
data_list = df['data'].tolist()
# If first item is a numpy array, flatten to list of dicts
import numpy as np
if data_list and isinstance(data_list[0], np.ndarray):
# Flatten array to list
flat_list = [dict(item) for item in data_list[0]]
df = pd.DataFrame.from_records(flat_list)
elif data_list and isinstance(data_list[0], dict):
df = pd.DataFrame.from_records(data_list)
elif data_list and isinstance(data_list[0], list):
expected_cols = ["change", "month", "mspr", "symbol", "year"]
df = pd.DataFrame(data_list, columns=expected_cols[:len(data_list[0])])
else:
df = pd.DataFrame()
# Extract symbol from filename if not present
if 'symbol' not in df.columns:
symbol = os.path.basename(file).split('_')[0]
df['symbol'] = symbol
# Only process if both 'year' and 'month' columns exist
if 'year' in df.columns and 'month' in df.columns:
newest = df.sort_values(['year', 'month'], ascending=[False, False]).iloc[[0]]
newest_rows.append(newest)
else:
print(f"[WARN] Skipping {file}: missing 'year' or 'month' column after expansion.")
if newest_rows:
all_newest_sentiment = pd.concat(newest_rows, ignore_index=True)
else:
all_newest_sentiment = pd.DataFrame()
# Merge only if sentiment data is available and has 'symbol' column
if not all_newest_sentiment.empty and 'symbol' in all_newest_sentiment.columns:
merged_df = features_df.merge(all_newest_sentiment, on='symbol', how='left', suffixes=('', '_sentiment'))
# Save result
merged_df.to_parquet(output_path, compression='snappy')
print(f"[INFO] Added newest sentiment data for all available symbols and saved to: {output_path}")
else:
print("[WARN] No valid sentiment data found to merge. Output not updated.")
def main():
features_path = "data/merged/features/stocks_features.parquet"
output_path = features_path
add_sentiment_to_features(features_path, output_path, None)
if __name__ == "__main__":
main()