Maaroufabousaleh
f
c49b21b
raw
history blame
38 kB
"""
Santiment Data Merger
=====================
This script merges all Santiment data files into a unified features dataset.
It reads all parquet files from data/santiment/, merges them by slug and datetime
with 1-hour interval tolerance, and creates merged_features.parquet.
Features:
- Reads all Santiment parquet files automatically
- Merges by slug and datetime with 1-hour tolerance
- Handles different data formats (financial, ohlcv, prices, etc.)
- Creates comprehensive feature dataset
- Robust error handling and logging
Author: AI Assistant
Date: August 2025
"""
import os
import sys
import pandas as pd
import numpy as np
from pathlib import Path
from datetime import datetime, timedelta
import logging
import glob
from typing import List, Dict, Optional, Tuple
import warnings
# Resolve data directory base
try:
from src.config import DATA_DIR as CFG_DATA_DIR
except Exception:
try:
from config import DATA_DIR as CFG_DATA_DIR
except Exception:
CFG_DATA_DIR = "/data"
def _resolve_under_data(path_like: str | os.PathLike) -> Path:
p = Path(path_like)
if p.is_absolute():
return p
parts = p.parts
if parts and parts[0].lower() == "data":
rel = Path(*parts[1:]) if len(parts) > 1 else Path()
else:
rel = p
return Path(CFG_DATA_DIR) / rel
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
class SantimentDataMerger:
"""
Comprehensive Santiment Data Merger
Merges all Santiment parquet files into a unified features dataset
with proper handling of different data formats and time alignment.
"""
def __init__(self,
source_dir: str = "data/santiment",
output_dir: str = "data/santiment",
time_tolerance_hours: int = 1):
"""
Initialize the Santiment Data Merger
Args:
source_dir: Directory containing Santiment parquet files
output_dir: Directory to save merged features
time_tolerance_hours: Tolerance for datetime matching (hours)
"""
# Resolve under DATA_DIR for portability
self.source_dir = _resolve_under_data(source_dir)
self.output_dir = _resolve_under_data(output_dir)
self.time_tolerance = timedelta(hours=time_tolerance_hours)
# Ensure directories exist
self.source_dir.mkdir(parents=True, exist_ok=True)
self.output_dir.mkdir(parents=True, exist_ok=True)
# Storage for processed data
self.dataframes: Dict[str, pd.DataFrame] = {}
self.merged_data: Optional[pd.DataFrame] = None
self.processing_stats = {
'files_found': 0,
'files_processed': 0,
'files_failed': 0,
'total_records': 0,
'unique_slugs': set(),
'date_range': {},
'categories': set()
}
# Track placeholder mode (no input files)
self.placeholder_created = False
# Initialize symbol normalizer
self.symbol_normalizer = self._setup_symbol_normalizer()
def _setup_symbol_normalizer(self):
"""
Set up symbol normalization mapping for consistent asset identification
Returns:
Dictionary mapping various symbol formats to canonical slugs
"""
# Canonical mapping for major crypto assets
# Maps various symbols/names to the official uppercase symbols
symbol_mapping = {
# Bitcoin variants
'bitcoin': 'BTC',
'btc': 'BTC',
'Bitcoin': 'BTC',
'BTC': 'BTC',
# Ethereum variants
'ethereum': 'ETH',
'eth': 'ETH',
'Ethereum': 'ETH',
'ETH': 'ETH',
# Ripple/XRP variants
'ripple': 'XRP',
'xrp': 'XRP',
'Ripple': 'XRP',
'XRP': 'XRP',
# Solana variants
'solana': 'SOL',
'sol': 'SOL',
'Solana': 'SOL',
'SOL': 'SOL',
# Cardano variants
'cardano': 'ADA',
'ada': 'ADA',
'Cardano': 'ADA',
'ADA': 'ADA',
# Polkadot variants
'polkadot': 'DOT',
'dot': 'DOT',
'Polkadot': 'DOT',
'DOT': 'DOT',
# Chainlink variants
'chainlink': 'LINK',
'link': 'LINK',
'Chainlink': 'LINK',
'LINK': 'LINK',
# Litecoin variants
'litecoin': 'LTC',
'ltc': 'LTC',
'Litecoin': 'LTC',
'LTC': 'LTC',
# Bitcoin Cash variants
'bitcoin-cash': 'BCH',
'bch': 'BCH',
'Bitcoin Cash': 'BCH',
'BCH': 'BCH',
# Stellar variants
'stellar': 'XLM',
'xlm': 'XLM',
'Stellar': 'XLM',
'XLM': 'XLM',
# Ethereum Classic variants
'ethereum-classic': 'ETC',
'etc': 'ETC',
'Ethereum Classic': 'ETC',
'ETC': 'ETC',
# EOS variants
'eos': 'EOS',
'EOS': 'EOS',
}
logger.info(f"Initialized symbol normalizer with {len(symbol_mapping)} mappings")
return symbol_mapping
def normalize_symbol(self, symbol: str) -> str:
"""
Normalize a symbol to its canonical uppercase format
Args:
symbol: Symbol to normalize
Returns:
Canonical uppercase symbol (e.g., BTC, ETH, SOL)
"""
if symbol in self.symbol_normalizer:
canonical = self.symbol_normalizer[symbol]
if symbol != canonical:
logger.debug(f"Normalized '{symbol}' -> '{canonical}'")
return canonical
# If not found in mapping, return uppercase version and log warning
logger.warning(f"Unknown symbol '{symbol}' not found in normalization mapping, using uppercase")
return symbol.upper()
def find_parquet_files(self) -> List[Path]:
"""
Find all parquet files in the source directory
Returns:
List of parquet file paths
"""
parquet_files = list(self.source_dir.glob("*.parquet"))
# Filter out non-Santiment files and already merged files
santiment_files = []
for file_path in parquet_files:
filename = file_path.name.lower()
# Include Santiment files but exclude already merged ones
if ('santiment_' in filename or 'ohlcv' in filename or 'prices' in filename) and 'merged' not in filename:
santiment_files.append(file_path)
self.processing_stats['files_found'] = len(santiment_files)
logger.info(f"Found {len(santiment_files)} Santiment parquet files")
return santiment_files
def parse_filename(self, file_path: Path) -> Dict[str, str]:
"""
Parse filename to extract metadata
Args:
file_path: Path to the parquet file
Returns:
Dictionary with parsed metadata
"""
filename = file_path.stem
parts = filename.split('_')
metadata = {
'source': 'santiment',
'category': 'unknown',
'metric': 'unknown',
'asset': 'unknown',
'timestamp': 'unknown'
}
try:
if filename.startswith('santiment_'):
# Format: santiment_category_metric_timestamp
if len(parts) >= 4:
metadata['category'] = parts[1]
metadata['metric'] = parts[2]
metadata['timestamp'] = '_'.join(parts[3:])
elif 'ohlcv' in filename:
# Format: santiment_ohlcv_asset_timestamp
if len(parts) >= 4:
metadata['category'] = 'ohlcv'
metadata['metric'] = 'ohlcv'
metadata['asset'] = parts[2]
metadata['timestamp'] = '_'.join(parts[3:])
elif 'prices' in filename:
# Format: santiment_prices_asset_timestamp
if len(parts) >= 4:
metadata['category'] = 'prices'
metadata['metric'] = 'prices_detailed'
metadata['asset'] = parts[2]
metadata['timestamp'] = '_'.join(parts[3:])
except Exception as e:
logger.warning(f"Failed to parse filename {filename}: {e}")
return metadata
def load_and_standardize_dataframe(self, file_path: Path) -> Optional[pd.DataFrame]:
"""
Load and standardize a parquet file
Args:
file_path: Path to the parquet file
Returns:
Standardized DataFrame or None if failed
"""
try:
df = pd.read_parquet(file_path)
if df.empty:
logger.warning(f"Empty dataframe: {file_path.name}")
return None
# Parse filename for metadata
metadata = self.parse_filename(file_path)
# Standardize datetime index
if 'datetime' in df.columns:
df['datetime'] = pd.to_datetime(df['datetime'])
df.set_index('datetime', inplace=True)
elif df.index.name == 'datetime' or pd.api.types.is_datetime64_any_dtype(df.index):
df.index = pd.to_datetime(df.index)
df.index.name = 'datetime'
else:
# Try to find a datetime column
datetime_cols = [col for col in df.columns if 'date' in col.lower() or 'time' in col.lower()]
if datetime_cols:
df[datetime_cols[0]] = pd.to_datetime(df[datetime_cols[0]])
df.set_index(datetime_cols[0], inplace=True)
df.index.name = 'datetime'
else:
logger.warning(f"No datetime column found in {file_path.name}")
return None
# Ensure slug column exists
if 'slug' not in df.columns:
if metadata['asset'] != 'unknown':
# Normalize the asset symbol before assigning
normalized_asset = self.normalize_symbol(metadata['asset'])
df['slug'] = normalized_asset
if metadata['asset'] != normalized_asset:
logger.info(f"Normalized asset '{metadata['asset']}' -> '{normalized_asset}' in {file_path.name}")
else:
logger.warning(f"No slug information found in {file_path.name}")
return None
else:
# Normalize existing slug column
df['slug'] = df['slug'].apply(self.normalize_symbol)
logger.debug(f"Normalized existing slug column in {file_path.name}")
# Add metadata columns
df['source_file'] = file_path.name
df['category'] = metadata['category']
# Rename columns to avoid conflicts and add prefixes
value_columns = [col for col in df.columns if col not in ['slug', 'metric', 'source_file', 'category']]
# Add category prefix to value columns
category = metadata['category']
metric = metadata['metric']
column_mapping = {}
for col in value_columns:
if col in ['slug', 'source_file', 'category']:
continue
# Create meaningful column name
if col == 'value':
new_col = f"{category}_{metric}"
elif col in ['open', 'high', 'low', 'close', 'volume']:
new_col = f"{category}_{col}"
else:
new_col = f"{category}_{col}"
column_mapping[col] = new_col
df.rename(columns=column_mapping, inplace=True)
# Update stats
self.processing_stats['unique_slugs'].update(df['slug'].unique())
self.processing_stats['categories'].add(category)
logger.info(f"Loaded {file_path.name}: {len(df)} records, {len(df.columns)} columns")
return df
except Exception as e:
logger.error(f"Failed to load {file_path.name}: {e}")
return None
def merge_dataframes_by_slug_datetime(self, dataframes: List[pd.DataFrame]) -> pd.DataFrame:
"""
Merge multiple dataframes by slug and datetime with tolerance
Args:
dataframes: List of DataFrames to merge
Returns:
Merged DataFrame
"""
if not dataframes:
return pd.DataFrame()
logger.info(f"Merging {len(dataframes)} dataframes...")
# Start with the first dataframe
merged = dataframes[0].copy()
logger.info(f"Starting with base dataframe: {len(merged)} records")
# Merge each subsequent dataframe
for i, df in enumerate(dataframes[1:], 1):
logger.info(f"Merging dataframe {i+1}/{len(dataframes)}: {len(df)} records")
try:
# Merge on slug and datetime index with tolerance
merged = self._merge_with_time_tolerance(merged, df)
logger.info(f"After merge {i}: {len(merged)} records")
except Exception as e:
logger.error(f"Failed to merge dataframe {i+1}: {e}")
continue
return merged
def _merge_with_time_tolerance(self, left_df: pd.DataFrame, right_df: pd.DataFrame) -> pd.DataFrame:
"""
Merge two dataframes with time tolerance
Args:
left_df: Left DataFrame
right_df: Right DataFrame
Returns:
Merged DataFrame
"""
# Reset index to make datetime a column for merging
left_reset = left_df.reset_index()
right_reset = right_df.reset_index()
# Perform merge on slug first
common_slugs = set(left_reset['slug'].unique()) & set(right_reset['slug'].unique())
if not common_slugs:
# No common slugs, concatenate vertically
logger.warning("No common slugs found, concatenating dataframes")
combined = pd.concat([left_df, right_df], axis=0, sort=False)
return combined.sort_index()
merged_parts = []
for slug in common_slugs:
left_slug = left_reset[left_reset['slug'] == slug].copy()
right_slug = right_reset[right_reset['slug'] == slug].copy()
if left_slug.empty or right_slug.empty:
continue
# Sort by datetime
left_slug = left_slug.sort_values('datetime')
right_slug = right_slug.sort_values('datetime')
# Merge with time tolerance using pandas merge_asof
try:
merged_slug = pd.merge_asof(
left_slug,
right_slug,
on='datetime',
by='slug',
tolerance=self.time_tolerance,
direction='nearest',
suffixes=('', '_right')
)
# Remove duplicate columns
duplicate_cols = [col for col in merged_slug.columns if col.endswith('_right')]
for col in duplicate_cols:
base_col = col.replace('_right', '')
if base_col in merged_slug.columns:
# Keep non-null values, preferring left side
merged_slug[base_col] = merged_slug[base_col].fillna(merged_slug[col])
else:
# Rename the right column
merged_slug[base_col] = merged_slug[col]
merged_slug.drop(columns=[col], inplace=True)
merged_parts.append(merged_slug)
except Exception as e:
logger.warning(f"Failed to merge slug {slug}: {e}")
# Fallback: simple concatenation for this slug
slug_combined = pd.concat([left_slug, right_slug], axis=0, sort=False)
merged_parts.append(slug_combined)
# Handle slugs that exist in only one dataframe
left_only_slugs = set(left_reset['slug'].unique()) - common_slugs
right_only_slugs = set(right_reset['slug'].unique()) - common_slugs
for slug in left_only_slugs:
merged_parts.append(left_reset[left_reset['slug'] == slug])
for slug in right_only_slugs:
merged_parts.append(right_reset[right_reset['slug'] == slug])
# Combine all parts
if merged_parts:
final_merged = pd.concat(merged_parts, axis=0, sort=False, ignore_index=True)
# Set datetime as index
final_merged.set_index('datetime', inplace=True)
return final_merged.sort_index()
else:
return left_df
def fill_missing_values(self, df: pd.DataFrame) -> pd.DataFrame:
"""
Comprehensive null filling strategy for the merged dataset
Args:
df: DataFrame with potential null values
Returns:
DataFrame with filled null values
"""
logger.info("Applying comprehensive null filling strategy...")
filled_df = df.copy()
null_counts_before = filled_df.isnull().sum().sum()
# Strategy 1: Forward fill within each asset (time-based continuity)
logger.info("Step 1: Forward filling within each asset...")
for slug in filled_df['slug'].unique():
slug_mask = filled_df['slug'] == slug
filled_df.loc[slug_mask] = filled_df.loc[slug_mask].ffill()
# Strategy 2: Backward fill within each asset (fill initial nulls)
logger.info("Step 2: Backward filling within each asset...")
for slug in filled_df['slug'].unique():
slug_mask = filled_df['slug'] == slug
filled_df.loc[slug_mask] = filled_df.loc[slug_mask].bfill()
# Strategy 3: Fill specific column types with appropriate defaults
logger.info("Step 3: Filling remaining nulls with type-specific defaults...")
for col in filled_df.columns:
if filled_df[col].isnull().any():
# Price and financial metrics: use median of the column
if any(keyword in col.lower() for keyword in ['price', 'usd', 'btc', 'eth', 'marketcap', 'volume']):
median_val = filled_df[col].median()
filled_df[col] = filled_df[col].fillna(median_val)
logger.debug(f"Filled {col} nulls with median: {median_val}")
# Address and network metrics: use 0 (no activity)
elif any(keyword in col.lower() for keyword in ['address', 'network', 'active', 'transaction']):
filled_df[col] = filled_df[col].fillna(0)
logger.debug(f"Filled {col} nulls with 0")
# Exchange metrics: use 0 (no flow)
elif any(keyword in col.lower() for keyword in ['exchange', 'inflow', 'outflow', 'balance']):
filled_df[col] = filled_df[col].fillna(0)
logger.debug(f"Filled {col} nulls with 0")
# Supply metrics: forward fill or use mean
elif any(keyword in col.lower() for keyword in ['supply', 'circulation', 'velocity']):
mean_val = filled_df[col].mean()
filled_df[col] = filled_df[col].fillna(mean_val)
logger.debug(f"Filled {col} nulls with mean: {mean_val}")
# Development metrics: use 0 (no activity)
elif any(keyword in col.lower() for keyword in ['dev', 'github', 'contributors']):
filled_df[col] = filled_df[col].fillna(0)
logger.debug(f"Filled {col} nulls with 0")
# Social metrics: use 0 (no mentions)
elif any(keyword in col.lower() for keyword in ['social', 'sentiment', 'volume_4chan', 'volume_reddit']):
filled_df[col] = filled_df[col].fillna(0)
logger.debug(f"Filled {col} nulls with 0")
# OHLCV metrics: use forward fill or interpolation
elif any(keyword in col.lower() for keyword in ['open', 'high', 'low', 'close', 'ohlcv']):
filled_df[col] = filled_df[col].ffill().bfill()
logger.debug(f"Filled {col} nulls with forward/backward fill")
# Derivatives and whale metrics: use 0
elif any(keyword in col.lower() for keyword in ['funding', 'interest', 'whale', 'holders']):
filled_df[col] = filled_df[col].fillna(0)
logger.debug(f"Filled {col} nulls with 0")
# String columns: use 'unknown' or most frequent value
elif filled_df[col].dtype == 'object':
if col in ['slug', 'category', 'source_file', 'metric', 'development_alternative_slug_used']:
# Skip these columns as they will be removed or are handled separately
continue
else:
mode_val = filled_df[col].mode()
if len(mode_val) > 0:
filled_df[col] = filled_df[col].fillna(mode_val[0])
else:
filled_df[col] = filled_df[col].fillna('unknown')
logger.debug(f"Filled {col} nulls with mode/unknown")
# Any remaining numeric nulls: use median
elif pd.api.types.is_numeric_dtype(filled_df[col]):
median_val = filled_df[col].median()
if pd.notna(median_val):
filled_df[col] = filled_df[col].fillna(median_val)
logger.debug(f"Filled {col} nulls with median: {median_val}")
else:
filled_df[col] = filled_df[col].fillna(0)
logger.debug(f"Filled {col} nulls with 0 (median was NaN)")
null_counts_after = filled_df.isnull().sum().sum()
nulls_filled = null_counts_before - null_counts_after
logger.info(f"Null filling completed:")
logger.info(f" Nulls before: {null_counts_before:,}")
logger.info(f" Nulls after: {null_counts_after:,}")
logger.info(f" Nulls filled: {nulls_filled:,}")
return filled_df
def process_all_files(self) -> bool:
"""
Process all Santiment parquet files
Returns:
True if successful, False otherwise
"""
try:
# Find all parquet files
parquet_files = self.find_parquet_files()
if not parquet_files:
logger.warning("No Santiment parquet files found")
# Graceful fallback: create minimal placeholder merged file to unblock pipeline
try:
# Create an explicitly typed empty DF with expected columns
placeholder = pd.DataFrame({'slug': pd.Series(dtype='object')})
# Set an empty datetime index (naive) with the expected name
placeholder.index = pd.DatetimeIndex([], name='datetime')
# Ensure output directory exists
self.output_dir.mkdir(parents=True, exist_ok=True)
out_path = self.output_dir / "merged_features.parquet"
# Save directly, bypassing save_merged_features constraints
placeholder.to_parquet(out_path, index=True)
# Mark placeholder state and keep merged_data None
self.placeholder_created = True
logger.info(f"Created placeholder Santiment merged_features.parquet with 0 rows at {out_path}")
return True
except Exception as e:
logger.error(f"Failed to create placeholder Santiment file: {e}")
return False
# Load and standardize all dataframes
dataframes = []
for file_path in parquet_files:
try:
df = self.load_and_standardize_dataframe(file_path)
if df is not None:
dataframes.append(df)
self.processing_stats['files_processed'] += 1
self.processing_stats['total_records'] += len(df)
else:
self.processing_stats['files_failed'] += 1
except Exception as e:
logger.error(f"Failed to process {file_path.name}: {e}")
self.processing_stats['files_failed'] += 1
if not dataframes:
logger.error("No dataframes were successfully loaded")
return False
# Merge all dataframes
logger.info("Starting merge process...")
self.merged_data = self.merge_dataframes_by_slug_datetime(dataframes)
if self.merged_data.empty:
logger.error("Merged dataframe is empty")
return False
# Update final stats
self.processing_stats['date_range'] = {
'start': str(self.merged_data.index.min()),
'end': str(self.merged_data.index.max()),
'total_days': (self.merged_data.index.max() - self.merged_data.index.min()).days
}
logger.info("All files processed successfully")
return True
except Exception as e:
logger.error(f"Failed to process files: {e}")
return False
def save_merged_features(self, filename: str = "merged_features.parquet") -> bool:
"""
Save the merged features to a parquet file with comprehensive null filling
Args:
filename: Output filename
Returns:
True if successful, False otherwise
"""
if self.merged_data is None or self.merged_data.empty:
logger.error("No merged data to save")
return False
try:
output_path = self.output_dir / filename
# Clean up the dataframe before saving
cleaned_df = self.merged_data.copy()
# Remove any completely null columns
null_columns = cleaned_df.columns[cleaned_df.isnull().all()].tolist()
if null_columns:
logger.info(f"Removing {len(null_columns)} completely null columns: {null_columns}")
cleaned_df = cleaned_df.dropna(axis=1, how='all')
# Apply comprehensive null filling strategy
logger.info("Applying comprehensive null filling...")
cleaned_df = self.fill_missing_values(cleaned_df)
# Remove unwanted columns
columns_to_remove = ['metric', 'source_file', 'category', 'development_alternative_slug_used']
existing_cols_to_remove = [col for col in columns_to_remove if col in cleaned_df.columns]
if existing_cols_to_remove:
logger.info(f"Removing unwanted columns: {existing_cols_to_remove}")
cleaned_df = cleaned_df.drop(columns=existing_cols_to_remove)
# Ensure all slugs are in uppercase format
logger.info("Ensuring all slugs are in uppercase format...")
cleaned_df['slug'] = cleaned_df['slug'].apply(lambda x: x.upper() if isinstance(x, str) else x)
# Fix data type issues for parquet compatibility
logger.info("Fixing data types for parquet compatibility...")
for col in cleaned_df.columns:
if cleaned_df[col].dtype == 'object':
# Check if column contains mixed types
sample_values = cleaned_df[col].dropna().head(100)
if len(sample_values) > 0:
# If it looks like it should be numeric, convert it
try:
pd.to_numeric(sample_values, errors='raise')
# If no error, convert the entire column
cleaned_df[col] = pd.to_numeric(cleaned_df[col], errors='coerce')
logger.debug(f"Converted {col} to numeric")
except (ValueError, TypeError):
# If conversion fails, ensure it's all strings
cleaned_df[col] = cleaned_df[col].astype(str)
logger.debug(f"Converted {col} to string")
# Sort by datetime and slug
cleaned_df = cleaned_df.sort_index()
cleaned_df = cleaned_df.sort_values(['slug'], kind='mergesort')
# Final data quality check
remaining_nulls = cleaned_df.isnull().sum().sum()
if remaining_nulls > 0:
logger.warning(f"Warning: {remaining_nulls} null values remain after filling")
# Log columns with remaining nulls
null_cols = cleaned_df.columns[cleaned_df.isnull().any()].tolist()
logger.warning(f"Columns with remaining nulls: {null_cols}")
else:
logger.info("✓ All null values successfully filled")
# Save to parquet with error handling
try:
cleaned_df.to_parquet(output_path, compression='snappy')
except Exception as parquet_error:
logger.error(f"Parquet save failed: {parquet_error}")
# Try to identify problematic columns
logger.info("Analyzing columns for parquet compatibility...")
for col in cleaned_df.columns:
try:
test_df = cleaned_df[[col]].copy()
test_df.to_parquet(output_path.with_suffix('.test.parquet'))
output_path.with_suffix('.test.parquet').unlink() # Clean up test file
except Exception as col_error:
logger.error(f"Column {col} causing issues: {col_error}")
# Force convert problematic column to string
cleaned_df[col] = cleaned_df[col].astype(str)
logger.info(f"Converted problematic column {col} to string")
# Try saving again
cleaned_df.to_parquet(output_path, compression='snappy')
logger.info(f"Merged features saved to {output_path}")
logger.info(f"Final dataset: {len(cleaned_df)} records, {len(cleaned_df.columns)} columns")
logger.info(f"Data completeness: {100 - (remaining_nulls / (len(cleaned_df) * len(cleaned_df.columns)) * 100):.2f}%")
return True
except Exception as e:
logger.error(f"Failed to save merged features: {e}")
return False
def generate_summary_report(self) -> Dict:
"""
Generate a comprehensive summary report
Returns:
Summary dictionary
"""
summary = {
'processing_timestamp': datetime.now().isoformat(),
'files_statistics': {
'files_found': self.processing_stats['files_found'],
'files_processed': self.processing_stats['files_processed'],
'files_failed': self.processing_stats['files_failed'],
'success_rate': f"{(self.processing_stats['files_processed'] / max(1, self.processing_stats['files_found'])) * 100:.1f}%"
},
'data_statistics': {
'total_records': self.processing_stats['total_records'],
'unique_slugs': list(self.processing_stats['unique_slugs']),
'categories_found': list(self.processing_stats['categories']),
'date_range': self.processing_stats['date_range']
}
}
if self.merged_data is not None:
summary['merged_statistics'] = {
'final_records': len(self.merged_data),
'final_columns': len(self.merged_data.columns),
'memory_usage_mb': f"{self.merged_data.memory_usage(deep=True).sum() / 1024 / 1024:.2f}",
'slug_distribution': self.merged_data['slug'].value_counts().to_dict(),
'null_percentage': f"{(self.merged_data.isnull().sum().sum() / (len(self.merged_data) * len(self.merged_data.columns))) * 100:.2f}%"
}
return summary
def print_summary(self):
"""Print a comprehensive summary of the merge process"""
summary = self.generate_summary_report()
print("\n" + "="*60)
print("SANTIMENT DATA MERGER SUMMARY")
print("="*60)
# File statistics
print(f"\nFile Processing:")
print(f" Files found: {summary['files_statistics']['files_found']}")
print(f" Files processed: {summary['files_statistics']['files_processed']}")
print(f" Files failed: {summary['files_statistics']['files_failed']}")
print(f" Success rate: {summary['files_statistics']['success_rate']}")
# Data statistics
print(f"\nData Overview:")
print(f" Total records processed: {summary['data_statistics']['total_records']:,}")
print(f" Unique assets (slugs): {len(summary['data_statistics']['unique_slugs'])}")
print(f" Categories found: {', '.join(summary['data_statistics']['categories_found'])}")
if summary['data_statistics']['date_range']:
print(f" Date range: {summary['data_statistics']['date_range']['start']} to {summary['data_statistics']['date_range']['end']}")
print(f" Total days: {summary['data_statistics']['date_range']['total_days']}")
# Merged statistics
if 'merged_statistics' in summary:
print(f"\nMerged Dataset:")
print(f" Final records: {summary['merged_statistics']['final_records']:,}")
print(f" Final columns: {summary['merged_statistics']['final_columns']}")
print(f" Memory usage: {summary['merged_statistics']['memory_usage_mb']} MB")
print(f" Data completeness: {100 - float(summary['merged_statistics']['null_percentage'].rstrip('%')):.1f}%")
# Show top assets by record count
print(f"\nTop Assets by Record Count:")
slug_dist = summary['merged_statistics']['slug_distribution']
for slug, count in list(slug_dist.items())[:5]:
print(f" {slug}: {count:,} records")
print("="*60)
def main():
"""Main function to run the Santiment data merger"""
logger.info("Starting Santiment Data Merger...")
# Initialize the merger
merger = SantimentDataMerger(
source_dir="data/santiment",
output_dir="data/santiment",
time_tolerance_hours=1
)
try:
# Process all files
success = merger.process_all_files()
if not success:
logger.error("Failed to process Santiment files")
return False
# If we only created a placeholder, treat as successful and skip saving/summary
if merger.placeholder_created:
logger.info("Placeholder Santiment dataset created; skipping save and summary.")
return True
# Save merged features
save_success = merger.save_merged_features("merged_features.parquet")
if not save_success:
logger.error("Failed to save merged features")
return False
# Print summary
merger.print_summary()
# Save summary report
summary = merger.generate_summary_report()
summary_path = Path("data/santiment") / "merge_summary.json"
import json
with open(summary_path, 'w') as f:
json.dump(summary, f, indent=2, default=str)
logger.info(f"Summary report saved to {summary_path}")
logger.info("Santiment data merge completed successfully!")
return True
except Exception as e:
logger.error(f"Santiment data merge failed: {e}")
return False
if __name__ == "__main__":
main()