File size: 10,715 Bytes
c49b21b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
#!/usr/bin/env python3
"""
Time-Shifted Santiment-Crypto Merger
===================================

This script handles the case where Santiment data and crypto data have different date ranges
due to API limitations. It performs a time-shifted merge using pattern matching.

Approaches:
1. Offset-based: Map August crypto data to July Santiment data with consistent offset
2. Day-of-week matching: Match same weekdays/times across different months
3. Pattern-based: Use similar market patterns from different time periods
"""

import pandas as pd
import numpy as np
from datetime import datetime, timedelta
import os
import logging

# Set up logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)

def load_data():
    """Load crypto and Santiment data"""
    logger.info("Loading data files...")
    
    # Load crypto features
    crypto_file = 'data/merged/features/crypto_features.parquet'
    crypto_df = pd.read_parquet(crypto_file)
    crypto_df['datetime'] = pd.to_datetime(crypto_df['interval_timestamp'], unit='ms', utc=True)
    
    # Load Santiment features  
    santiment_file = 'data/santiment/merged_features.parquet'
    santiment_df = pd.read_parquet(santiment_file)
    
    logger.info(f"Crypto: {len(crypto_df)} records from {crypto_df['datetime'].min()} to {crypto_df['datetime'].max()}")
    logger.info(f"Santiment: {len(santiment_df)} records from {santiment_df.index.min()} to {santiment_df.index.max()}")
    
    return crypto_df, santiment_df

def calculate_time_offset(crypto_df, santiment_df):
    """Calculate the time offset between datasets"""
    crypto_start = crypto_df['datetime'].min()
    santiment_start = santiment_df.index.min()
    
    offset = crypto_start - santiment_start
    logger.info(f"Time offset: {offset.days} days")
    
    return offset

def merge_with_time_shift(crypto_df, santiment_df, method='offset'):
    """
    Merge crypto and Santiment data using time-shift techniques
    
    Args:
        crypto_df: Crypto features DataFrame
        santiment_df: Santiment features DataFrame  
        method: 'offset', 'day_of_week', or 'pattern'
    """
    logger.info(f"Starting time-shifted merge using method: {method}")
    
    merged_results = []
    symbol_mapping = {'BTC': 'BTC', 'ETH': 'ETH', 'ADA': 'ADA', 'SOL': 'SOL', 'XRP': 'XRP'}
    
    if method == 'offset':
        # Calculate consistent time offset
        offset = calculate_time_offset(crypto_df, santiment_df)
        
        for symbol, slug in symbol_mapping.items():
            logger.info(f"Processing {symbol} β†’ {slug} with offset method")
            
            crypto_symbol = crypto_df[crypto_df['symbol'] == symbol].copy()
            santiment_slug = santiment_df[santiment_df['slug'] == slug].copy()
            
            if crypto_symbol.empty or santiment_slug.empty:
                logger.warning(f"Skipping {symbol} - missing data")
                continue
            
            # Apply offset to match timeframes
            merged_symbol = merge_with_offset(crypto_symbol, santiment_slug, offset)
            merged_results.append(merged_symbol)
            
    elif method == 'day_of_week':
        # Match same day-of-week and time patterns
        for symbol, slug in symbol_mapping.items():
            logger.info(f"Processing {symbol} β†’ {slug} with day-of-week method")
            
            crypto_symbol = crypto_df[crypto_df['symbol'] == symbol].copy()
            santiment_slug = santiment_df[santiment_df['slug'] == slug].copy()
            
            if crypto_symbol.empty or santiment_slug.empty:
                logger.warning(f"Skipping {symbol} - missing data")
                continue
                
            merged_symbol = merge_by_day_pattern(crypto_symbol, santiment_slug)
            merged_results.append(merged_symbol)
    
    # Combine results
    if merged_results:
        merged_df = pd.concat(merged_results, ignore_index=True)
        logger.info(f"Merge completed: {len(merged_df)} records")
        return merged_df
    else:
        logger.error("No data could be merged!")
        return None

def merge_with_offset(crypto_symbol, santiment_slug, offset):
    """Merge using consistent time offset"""
    merged_records = []
    
    for _, crypto_row in crypto_symbol.iterrows():
        # Shift crypto timestamp back by offset to match Santiment timeframe
        shifted_time = crypto_row['datetime'] - offset
        
        # Find closest Santiment record
        time_diffs = np.abs(santiment_slug.index - shifted_time)
        closest_idx = time_diffs.argmin()
        closest_idx = santiment_slug.index[closest_idx]
        
        # Check if match is reasonable (within 1 hour)
        if time_diffs.min() <= pd.Timedelta(hours=1):
            santiment_row = santiment_slug.loc[closest_idx]
            
            # Combine data
            combined_row = crypto_row.copy()
            for col in santiment_slug.columns:
                if col != 'slug':
                    combined_row[f'santiment_{col}'] = santiment_row[col]
            
            merged_records.append(combined_row)
    
    return pd.DataFrame(merged_records)

def merge_by_day_pattern(crypto_symbol, santiment_slug):
    """Merge by matching day-of-week and time patterns"""
    merged_records = []
    
    for _, crypto_row in crypto_symbol.iterrows():
        crypto_time = crypto_row['datetime']
        
        # Find Santiment records with same day-of-week and similar time
        santiment_same_weekday = santiment_slug[
            santiment_slug.index.dayofweek == crypto_time.dayofweek
        ]
        
        if not santiment_same_weekday.empty:
            # Find closest time-of-day match
            crypto_time_of_day = crypto_time.time()
            
            time_diffs = santiment_same_weekday.index.map(
                lambda x: abs((x.time().hour * 60 + x.time().minute) - 
                             (crypto_time_of_day.hour * 60 + crypto_time_of_day.minute))
            )
            
            closest_idx = time_diffs.argmin()
            closest_idx = santiment_same_weekday.index[closest_idx]
            santiment_row = santiment_same_weekday.loc[closest_idx]
            
            # Combine data
            combined_row = crypto_row.copy()
            for col in santiment_slug.columns:
                if col != 'slug':
                    combined_row[f'santiment_{col}'] = santiment_row[col]
            
            merged_records.append(combined_row)
    
    return pd.DataFrame(merged_records)

def analyze_merge_quality(merged_df, method):
    """Analyze merge quality and provide statistics"""
    if merged_df is None or merged_df.empty:
        return {"error": "No merged data"}
    
    santiment_cols = [col for col in merged_df.columns if col.startswith('santiment_')]
    
    analysis = {
        'method_used': method,
        'total_records': len(merged_df),
        'santiment_features_added': len(santiment_cols),
        'symbols_processed': sorted(merged_df['symbol'].unique()),
        'completeness_by_symbol': {}
    }
    
    # Calculate completeness by symbol
    for symbol in analysis['symbols_processed']:
        symbol_data = merged_df[merged_df['symbol'] == symbol]
        non_null_counts = symbol_data[santiment_cols].notna().sum(axis=1)
        records_with_santiment = (non_null_counts > 0).sum()
        
        analysis['completeness_by_symbol'][symbol] = {
            'total_records': len(symbol_data),
            'records_with_santiment': records_with_santiment,
            'completeness_pct': records_with_santiment / len(symbol_data) * 100
        }
    
    return analysis

def save_results(merged_df, analysis, method):
    """Save merged results with method identifier"""
    if merged_df is None:
        logger.error("Cannot save - no merged data")
        return None, None
    
    logger.info("Saving time-shifted merge results...")
    
    # Create output directory
    output_dir = 'data/merged/features'
    os.makedirs(output_dir, exist_ok=True)
    
    # Save with method identifier
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
    output_file = os.path.join(output_dir, f'crypto_with_santiment_{method}_{timestamp}.parquet')
    
    merged_df.to_parquet(output_file, index=False)
    logger.info(f"Merged features saved to: {output_file}")
    
    # Save analysis
    analysis_file = os.path.join(output_dir, f'santiment_merge_analysis_{method}_{timestamp}.json')
    import json
    with open(analysis_file, 'w') as f:
        json.dump(analysis, f, indent=2, default=str)
    
    logger.info(f"Analysis saved to: {analysis_file}")
    
    return output_file, analysis_file

def main():
    """Main time-shifted merge process"""
    logger.info("Starting time-shifted Santiment-Crypto merge...")
    
    try:
        # Load data
        crypto_df, santiment_df = load_data()
        
        # Try different merge methods
        methods = ['offset', 'day_of_week']
        results = {}
        
        for method in methods:
            logger.info(f"\n{'='*50}")
            logger.info(f"TRYING METHOD: {method.upper()}")
            logger.info(f"{'='*50}")
            
            merged_df = merge_with_time_shift(crypto_df, santiment_df, method=method)
            analysis = analyze_merge_quality(merged_df, method)
            
            if merged_df is not None:
                output_file, analysis_file = save_results(merged_df, analysis, method)
                results[method] = {
                    'success': True,
                    'records': len(merged_df),
                    'completeness': analysis.get('completeness_by_symbol', {}),
                    'output_file': output_file
                }
            else:
                results[method] = {'success': False}
        
        # Print summary
        print("\n" + "="*60)
        print("TIME-SHIFTED MERGE SUMMARY")
        print("="*60)
        
        for method, result in results.items():
            print(f"\n{method.upper()} METHOD:")
            if result['success']:
                print(f"  βœ… Success: {result['records']} records merged")
                print(f"  πŸ“ File: {result['output_file']}")
                for symbol, stats in result['completeness'].items():
                    print(f"     {symbol}: {stats['completeness_pct']:.1f}% complete")
            else:
                print(f"  ❌ Failed")
        
        print("="*60)
        
    except Exception as e:
        logger.error(f"Time-shifted merge failed: {e}")
        raise

if __name__ == "__main__":
    main()