File size: 29,864 Bytes
c49b21b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 |
import os
import pandas as pd
import numpy as np
from pathlib import Path
# import #logging
from datetime import datetime
# Resolve DATA_DIR from config (container-safe) with fallback
try:
from src.config import DATA_DIR as CFG_DATA_DIR # when run as module
except Exception:
try:
from config import DATA_DIR as CFG_DATA_DIR # when run as script from src/
except Exception:
CFG_DATA_DIR = "/data"
class FixedTimestampHandler:
def __init__(self, base_path: str | os.PathLike | None = None):
# Prefer explicit argument, then DATA_DIR env, then config fallback
resolved_base = base_path or os.getenv("DATA_DIR") or CFG_DATA_DIR
self.base_path = Path(resolved_base)
self.finviz_path = self.base_path / "finviz" / "sentiment"
self.crypto_features_path = self.base_path / "merged" / "features" / "crypto_features.parquet"
self.stocks_features_path = self.base_path / "merged" / "features" / "stocks_features.parquet"
self.output_path = self.base_path / "merged" / "features"
self.output_path.mkdir(parents=True, exist_ok=True)
# Configure #logging
#logging.basicConfig(level=#logging.INFO,
# format='%(asctime)s - %(levelname)s - %(message)s')
# Define tickers and mappings
self.stock_tickers = ["AAPL", "TSLA", "GOOGL", "NVDA", "MSFT", "COIN"]
self.crypto_ticker_mapping = {
"BTC": "bitcoin",
"ETH": "ethereum",
"SOL": "solana",
"XRP": "ripple",
"ADA": "cardano"
}
# Reverse mapping: crypto name to ticker (all lowercase keys)
self.crypto_name_to_ticker = {v.lower(): k for k, v in self.crypto_ticker_mapping.items()}
def crypto_name_to_symbol(self, name):
"""Transform crypto name (e.g., 'bitcoin', 'Bitcoin', 'BITCOIN') to ticker symbol (e.g., 'BTC')"""
if not isinstance(name, str):
return None
name_lower = name.strip().lower()
# Try exact match
if name_lower in self.crypto_name_to_ticker:
return self.crypto_name_to_ticker[name_lower]
# Try to match ignoring spaces and underscores
for key in self.crypto_name_to_ticker:
if name_lower.replace(' ', '').replace('_', '') == key.replace(' ', '').replace('_', ''):
return self.crypto_name_to_ticker[key]
return None
def is_timestamp_column(self, df, col_name):
"""Determine if a column is likely a timestamp column"""
if pd.api.types.is_datetime64_any_dtype(df[col_name]):
return True
if pd.api.types.is_numeric_dtype(df[col_name]):
sample_vals = df[col_name].dropna()
if len(sample_vals) == 0:
return False
sample_val = sample_vals.iloc[0]
current_time = pd.Timestamp.now().timestamp()
units = [
('s', 1),
('ms', 1000),
('us', 1000000),
('ns', 1000000000)
]
for unit, divisor in units:
try:
if unit == 's':
ts_value = sample_val
else:
ts_value = sample_val / divisor
if abs(ts_value - current_time) < (10 * 365 * 24 * 3600):
return True
except:
continue
if df[col_name].dtype == 'object':
sample_val = df[col_name].dropna().iloc[0] if not df[col_name].empty else None
if sample_val and isinstance(sample_val, str):
try:
pd.to_datetime(sample_val)
return True
except (ValueError, TypeError):
pass
return False
def get_timestamp_columns(self, df):
"""Identify all timestamp columns in a dataframe"""
timestamp_cols = []
potential_names = ['time', 'date', 'interval', 'timestamp', 'dt']
for col in df.columns:
if any(keyword in col.lower() for keyword in potential_names):
if self.is_timestamp_column(df, col):
timestamp_cols.append(col)
return timestamp_cols
def convert_timestamp_column(self, df, col_name, unit='auto'):
"""Convert a timestamp column to datetime format with improved validation"""
if pd.api.types.is_datetime64_any_dtype(df[col_name]):
if df[col_name].dt.tz is not None:
df[col_name] = df[col_name].dt.tz_localize(None)
return df[col_name]
if pd.api.types.is_numeric_dtype(df[col_name]):
sample_vals = df[col_name].dropna()
if len(sample_vals) == 0:
print(f"[ERROR] No valid values in timestamp column {col_name}")
return None
# Convert nullable Int64 to regular numeric if needed
if hasattr(sample_vals, 'dtype') and str(sample_vals.dtype).startswith('Int'):
sample_vals = sample_vals.astype('int64')
if unit == 'auto':
current_time = pd.Timestamp.now().timestamp()
best_unit = None
best_distance = float('inf')
for test_unit in ['s', 'ms', 'us', 'ns']:
try:
# Additional safety check
if len(sample_vals) == 0:
continue
first_val = sample_vals.iloc[0]
if pd.isna(first_val):
continue
if test_unit == 's':
test_ts = pd.to_datetime(first_val, unit='s')
else:
divisor = {'ms': 1000, 'us': 1000000, 'ns': 1000000000}[test_unit]
test_ts = pd.to_datetime(first_val / divisor, unit='s')
distance = abs((pd.Timestamp.now() - test_ts).total_seconds())
if distance < best_distance:
best_distance = distance
best_unit = test_unit
except Exception as e:
#logging.debug(f"Failed to test unit {test_unit} for column {col_name}: {e}")
continue
if best_unit is None:
#logging.error(f"Could not determine unit for column {col_name}")
return None
unit = best_unit
#logging.info(f"Auto-detected unit for {col_name}: {unit}")
try:
# Convert nullable Int64 to regular numeric if needed for the whole column
values_to_convert = df[col_name]
if hasattr(values_to_convert, 'dtype') and str(values_to_convert.dtype).startswith('Int'):
values_to_convert = values_to_convert.astype('int64')
if unit == 's':
converted = pd.to_datetime(values_to_convert, unit='s')
else:
divisor = {'ms': 1000, 'us': 1000000, 'ns': 1000000000}[unit]
converted = pd.to_datetime(values_to_convert / divisor, unit='s')
if converted.dt.tz is not None:
converted = converted.dt.tz_localize(None)
if converted.min().year < 2000:
#logging.warning(f"Converted timestamps for {col_name} seem too old. Checking alternative units.")
for alt_unit in ['s', 'ms', 'us', 'ns']:
if alt_unit == unit:
continue
try:
if alt_unit == 's':
alt_converted = pd.to_datetime(df[col_name], unit='s')
else:
alt_divisor = {'ms': 1000, 'us': 1000000, 'ns': 1000000000}[alt_unit]
alt_converted = pd.to_datetime(df[col_name] / alt_divisor, unit='s')
if alt_converted.min().year > 2000:
#logging.info(f"Alternative unit {alt_unit} gives better results for {col_name}")
converted = alt_converted
break
except Exception as e:
#logging.debug(f"Failed to try alternative unit {alt_unit} for column {col_name}: {e}")
continue
#logging.info(f"Successfully converted {col_name} using unit '{unit}'")
#logging.info(f"Date range: {converted.min()} to {converted.max()}")
return converted
except Exception as e:
#logging.error(f"Failed to convert {col_name} using unit '{unit}': {e}")
return None
elif df[col_name].dtype == 'object':
try:
converted = pd.to_datetime(df[col_name])
if converted.dt.tz is not None:
converted = converted.dt.tz_localize(None)
#logging.info(f"Successfully converted string timestamps in {col_name}")
return converted
except Exception as e:
#logging.error(f"Failed to convert string timestamps in {col_name}: {e}")
return None
else:
#logging.error(f"Unknown timestamp format in column {col_name}")
return None
def select_best_timestamp_column(self, df, timestamp_columns):
"""Select the best timestamp column from a list of potential columns"""
best_col = None
best_score = -1
for col in timestamp_columns:
try:
if col not in df.columns:
print(f"[WARN] Column {col} not found in dataframe")
continue
if df[col].isnull().all():
print(f"[WARN] Column {col} contains only null values")
continue
converted = self.convert_timestamp_column(df, col)
if converted is None:
print(f"[WARN] Could not convert column {col} to timestamp")
continue
non_null_count = converted.notna().sum()
recent_count = converted[converted > pd.Timestamp('2020-01-01')].count()
score = non_null_count + recent_count * 2
print(f"[DEBUG] Column {col}: score={score}, non_null={non_null_count}, recent={recent_count}")
if score > best_score:
best_score = score
best_col = col
except Exception as e:
print(f"[WARN] Error evaluating timestamp column {col}: {e}")
continue
print(f"[INFO] Best timestamp column: {best_col} (score: {best_score})")
return best_col
def load_sentiment_data(self, symbol):
"""Load sentiment data with proper timestamp handling"""
sentiment_file = self.finviz_path / f"{symbol.upper()}_sentiment.parquet"
if not sentiment_file.exists():
print(f"[WARN] Sentiment file not found: {sentiment_file}")
return None
try:
df = pd.read_parquet(sentiment_file)
print(f"[INFO] Loaded sentiment data for {symbol}: {len(df)} rows")
timestamp_cols = self.get_timestamp_columns(df)
if not timestamp_cols:
print(f"[ERROR] No timestamp columns found in {symbol} sentiment data")
return None
timestamp_col = timestamp_cols[0]
converted = self.convert_timestamp_column(df, timestamp_col)
if converted is None:
print(f"[ERROR] Could not convert timestamp column {timestamp_col} in {symbol}")
return None
df['sentiment_timestamp'] = converted
df['symbol'] = symbol.upper()
return df
except Exception as e:
print(f"[ERROR] Error loading sentiment data for {symbol}: {e}")
return None
def load_features_data(self, data_type='stocks'):
"""Load features data with improved timestamp handling"""
file_path = self.stocks_features_path if data_type == 'stocks' else self.crypto_features_path
if not file_path.exists():
print(f"[ERROR] Features file not found: {file_path}")
return None
try:
df = pd.read_parquet(file_path)
print(f"[INFO] Loaded {data_type} features: {len(df)} rows")
potential_timestamp_cols = [col for col in df.columns if any(keyword in col.lower() for keyword in ['time', 'date', 'interval', 'timestamp', 'dt'])]
print(f"[INFO] Potential timestamp columns: {potential_timestamp_cols}")
# Safer timestamp detection
timestamp_cols = []
for col in potential_timestamp_cols:
try:
is_ts = self.is_timestamp_column(df, col)
if is_ts:
timestamp_cols.append(col)
print(f"[DEBUG] {col} confirmed as timestamp column")
else:
print(f"[DEBUG] {col} rejected as timestamp column")
except Exception as e:
print(f"[WARN] Error checking {col}: {e}")
continue
print(f"[INFO] Confirmed timestamp columns: {timestamp_cols}")
if not timestamp_cols:
print(f"[ERROR] No valid timestamp columns found in {data_type} features")
return None
best_col = self.select_best_timestamp_column(df, timestamp_cols)
if best_col is None:
print(f"[ERROR] Could not select a valid timestamp column from {timestamp_cols}")
return None
converted = self.convert_timestamp_column(df, best_col)
if converted is None:
print(f"[ERROR] Failed to convert selected timestamp column {best_col}")
return None
df['feature_timestamp'] = converted
print(f"[INFO] Selected timestamp column: {best_col}")
print(f"[INFO] Date range: {converted.min()} to {converted.max()}")
return df
except Exception as e:
import traceback
print(f"[ERROR] Error loading {data_type} features: {e}")
print(f"[ERROR] Traceback: {traceback.format_exc()}")
return None
def merge_sentiment_to_features(self, features_df, sentiment_df, tolerance_minutes=60*12):
"""Merge sentiment data INTO features data based on closest timestamp, with tolerance window"""
features_sorted = features_df.sort_values(by='feature_timestamp')
sentiment_sorted = sentiment_df.sort_values(by='sentiment_timestamp')
# Use a tolerance window for timestamp matching
tolerance = pd.Timedelta(minutes=tolerance_minutes)
merged_df = pd.merge_asof(
features_sorted,
sentiment_sorted,
left_on='feature_timestamp',
right_on='sentiment_timestamp',
direction='nearest',
tolerance=tolerance
)
# If no sentiment match within tolerance, sentiment_score will be NaN
if 'sentiment_score' in merged_df.columns:
unmatched = merged_df['sentiment_score'].isna().sum()
print(f"[INFO] Rows with no sentiment match (NaN sentiment_score): {unmatched}")
print(f"[INFO] Merged {len(features_df)} feature rows with {len(sentiment_df)} sentiment rows using tolerance {tolerance_minutes} min")
print(f"[INFO] Result: {len(merged_df)} rows")
return merged_df
def process_stocks_data(self):
"""Process all stocks data by merging finviz sentiment into stock features"""
print("[INFO] Processing stocks data...")
# Load stocks features first (this is the base dataset)
stocks_df = self.load_features_data('stocks')
if stocks_df is None:
print("[ERROR] Failed to load stocks features data")
return None
# Check what columns are available and what symbols are in the data
if 'symbol' in stocks_df.columns:
unique_symbols = stocks_df['symbol'].unique()
elif 'ticker' in stocks_df.columns:
unique_symbols = stocks_df['ticker'].unique()
print(f"[INFO] Available symbols in stocks features: {unique_symbols}")
# Check if any sentiment files exist
if not self.finviz_path.exists():
print(f"[WARN] Finviz sentiment directory does not exist: {self.finviz_path}")
print(f"[WARN] Proceeding without sentiment data merge for stocks")
# Save features as-is without sentiment merge
output_file = self.output_path / "stocks_features.parquet"
stocks_df.to_parquet(output_file)
print(f"[INFO] Stocks features saved without sentiment to: {output_file}")
return stocks_df
# Check if any sentiment files exist for our tickers
sentiment_files_exist = any(
(self.finviz_path / f"{ticker.upper()}_sentiment.parquet").exists()
for ticker in self.stock_tickers
)
if not sentiment_files_exist:
print(f"[WARN] No sentiment files found for any stock tickers: {self.stock_tickers}")
print(f"[WARN] Proceeding without sentiment data merge for stocks")
# Save features as-is without sentiment merge
output_file = self.output_path / "stocks_features.parquet"
stocks_df.to_parquet(output_file)
print(f"[INFO] Stocks features saved without sentiment to: {output_file}")
return stocks_df
merged_stocks_list = []
for ticker in self.stock_tickers:
print(f"[INFO] Processing stock ticker: {ticker}")
# Load sentiment data for this ticker
sentiment_df = self.load_sentiment_data(ticker)
if sentiment_df is None:
print(f"[WARN] No sentiment data for {ticker}, skipping...")
continue
# Filter stocks features for this ticker
ticker_stocks = None
if 'symbol' in stocks_df.columns:
ticker_stocks = stocks_df[stocks_df['symbol'] == ticker].copy()
elif 'ticker' in stocks_df.columns:
ticker_stocks = stocks_df[stocks_df['ticker'] == ticker].copy()
if ticker_stocks is None or len(ticker_stocks) == 0:
print(f"[WARN] No feature data found for ticker {ticker} - skipping this ticker")
continue
print(f"[INFO] Found {len(ticker_stocks)} feature rows for {ticker}")
# Merge sentiment INTO features
merged_ticker = self.merge_sentiment_to_features(ticker_stocks, sentiment_df)
# Remove symbol_y and replace symbol_x with symbol
if 'symbol_y' in merged_ticker.columns:
merged_ticker = merged_ticker.drop(columns=['symbol_y'])
if 'symbol_x' in merged_ticker.columns:
merged_ticker = merged_ticker.rename(columns={'symbol_x': 'symbol'})
# Re-order columns: symbol first, interval_timestamp second (if present)
cols = list(merged_ticker.columns)
if 'symbol' in cols:
cols.remove('symbol')
new_order = ['symbol']
if 'interval_timestamp' in cols:
cols.remove('interval_timestamp')
new_order.append('interval_timestamp')
new_order += cols
merged_ticker = merged_ticker[new_order]
merged_stocks_list.append(merged_ticker)
if not merged_stocks_list:
print("[WARN] No stocks data was successfully merged with sentiment")
print("[WARN] Saving original stocks features without sentiment")
output_file = self.output_path / "stocks_features.parquet"
stocks_df.to_parquet(output_file)
print(f"[INFO] Stocks features saved without sentiment to: {output_file}")
return stocks_df
# Combine all merged stock data
final_stocks_df = pd.concat(merged_stocks_list, ignore_index=True)
# Save the result
output_file = self.output_path / "stocks_features.parquet"
final_stocks_df.to_parquet(output_file)
print(f"[INFO] Stocks data with sentiment saved to: {output_file}")
return final_stocks_df
def process_crypto_data(self):
"""Process all crypto data by merging finviz sentiment into crypto features"""
print("[INFO] Processing crypto data...")
# Load crypto features first (this is the base dataset)
crypto_df = self.load_features_data('crypto')
if crypto_df is None:
print("[ERROR] Failed to load crypto features data")
return None
# Check for various possible symbol/ticker columns
symbol_columns = [col for col in crypto_df.columns if any(keyword in col.lower()
for keyword in ['symbol', 'ticker', 'name', 'id', 'coin'])]
print(f"[INFO] Available symbol columns in crypto: {symbol_columns}")
# Try to identify unique values in potential symbol columns
for col in symbol_columns:
if crypto_df[col].dtype == 'object':
unique_values = crypto_df[col].unique()[:10] # Show first 10 unique values
print(f"[INFO] Sample values in {col}: {unique_values}")
# Check if any sentiment files exist
if not self.finviz_path.exists():
print(f"[WARN] Finviz sentiment directory does not exist: {self.finviz_path}")
print(f"[WARN] Proceeding without sentiment data merge for crypto")
# Save features as-is without sentiment merge
output_file = self.output_path / "crypto_features.parquet"
crypto_df.to_parquet(output_file)
print(f"[INFO] Crypto features saved without sentiment to: {output_file}")
return crypto_df
# Check if any sentiment files exist for our crypto tickers
sentiment_files_exist = any(
(self.finviz_path / f"{ticker.upper()}_sentiment.parquet").exists()
for ticker in self.crypto_ticker_mapping.keys()
)
if not sentiment_files_exist:
print(f"[WARN] No sentiment files found for any crypto tickers: {list(self.crypto_ticker_mapping.keys())}")
print(f"[WARN] Proceeding without sentiment data merge for crypto")
# Save features as-is without sentiment merge
output_file = self.output_path / "crypto_features.parquet"
crypto_df.to_parquet(output_file)
print(f"[INFO] Crypto features saved without sentiment to: {output_file}")
return crypto_df
merged_crypto_list = []
for crypto_ticker, crypto_name in self.crypto_ticker_mapping.items():
print(f"[INFO] Processing crypto ticker: {crypto_ticker} (name: {crypto_name})")
# Load sentiment data for this crypto ticker
sentiment_df = self.load_sentiment_data(crypto_ticker)
if sentiment_df is None:
print(f"[WARN] No sentiment data for {crypto_ticker}, skipping...")
continue
# Try different approaches to filter crypto features
ticker_crypto = None
# Approach 1: Try exact ticker match
for col in ['symbol', 'ticker', 'coin_id', 'id']:
if col in crypto_df.columns:
matches = crypto_df[crypto_df[col].str.upper() == crypto_ticker].copy()
if len(matches) > 0:
ticker_crypto = matches
print(f"[INFO] Found {len(matches)} rows matching {crypto_ticker} in column '{col}'")
break
# Approach 2: Try crypto name match
if ticker_crypto is None or len(ticker_crypto) == 0:
for col in ['name', 'coin_name']:
if col in crypto_df.columns:
matches = crypto_df[crypto_df[col].str.lower() == crypto_name.lower()].copy()
if len(matches) > 0:
ticker_crypto = matches
print(f"[INFO] Found {len(matches)} rows matching {crypto_name} in column '{col}'")
break
# Approach 3: Try partial matching (in case of different formats)
if ticker_crypto is None or len(ticker_crypto) == 0:
for col in symbol_columns:
if crypto_df[col].dtype == 'object':
# Try case-insensitive contains match
matches = crypto_df[crypto_df[col].str.contains(crypto_ticker, case=False, na=False)].copy()
if len(matches) > 0:
ticker_crypto = matches
print(f"[INFO] Found {len(matches)} rows with partial match for {crypto_ticker} in column '{col}'")
break
# Try crypto name partial match
matches = crypto_df[crypto_df[col].str.contains(crypto_name, case=False, na=False)].copy()
if len(matches) > 0:
ticker_crypto = matches
print(f"[INFO] Found {len(matches)} rows with partial match for {crypto_name} in column '{col}'")
break
if ticker_crypto is None or len(ticker_crypto) == 0:
print(f"[WARN] No feature data found for crypto {crypto_ticker} ({crypto_name}) - skipping this crypto")
continue
# Merge sentiment INTO features
merged_ticker = self.merge_sentiment_to_features(ticker_crypto, sentiment_df)
# Remove symbol_x and replace symbol_y with symbol
if 'symbol_x' in merged_ticker.columns:
merged_ticker = merged_ticker.drop(columns=['symbol_x'])
if 'symbol_y' in merged_ticker.columns:
merged_ticker = merged_ticker.rename(columns={'symbol_y': 'symbol'})
# Remove duplicate 'symbol' columns if any
symbol_cols = [col for col in merged_ticker.columns if col == 'symbol']
if len(symbol_cols) > 1:
# Keep only the first 'symbol' column
# This will drop all but the first occurrence
merged_ticker = merged_ticker.loc[:, ~merged_ticker.columns.duplicated()]
# Re-order columns: symbol first, interval_timestamp second (if present)
cols = list(merged_ticker.columns)
if 'symbol' in cols:
cols.remove('symbol')
new_order = ['symbol']
if 'interval_timestamp' in cols:
cols.remove('interval_timestamp')
new_order.append('interval_timestamp')
new_order += cols
merged_ticker = merged_ticker[new_order]
merged_crypto_list.append(merged_ticker)
if not merged_crypto_list:
print("[WARN] No crypto data was successfully merged with sentiment")
print("[WARN] Saving original crypto features without sentiment")
output_file = self.output_path / "crypto_features.parquet"
crypto_df.to_parquet(output_file)
print(f"[INFO] Crypto features saved without sentiment to: {output_file}")
return crypto_df
# Combine all merged crypto data
final_crypto_df = pd.concat(merged_crypto_list, ignore_index=True)
# Save the result
output_file = self.output_path / "crypto_features.parquet"
final_crypto_df.to_parquet(output_file)
print(f"[INFO] Crypto data with sentiment saved to: {output_file}")
return final_crypto_df
def process_all_data(self):
"""Process both stocks and crypto data"""
#logging.info("Starting data processing for all assets...")
stocks_result = self.process_stocks_data()
crypto_result = self.process_crypto_data()
if stocks_result is not None:
print(f"[OK] Stocks processing completed: {len(stocks_result)} rows")
else:
print("[ERROR] Stocks processing failed")
if crypto_result is not None:
print(f"[OK] Crypto processing completed: {len(crypto_result)} rows")
else:
print("[ERROR] Crypto processing failed")
return stocks_result, crypto_result
# Example usage
if __name__ == "__main__":
handler = FixedTimestampHandler()
# Test individual components
#logging.info("Testing sentiment data loading...")
sentiment_df = handler.load_sentiment_data("AAPL")
stocks_df = handler.load_features_data('stocks')
# Test merge process
# handler.test_merge()
# Process all data
handler.process_all_data() |