File size: 15,042 Bytes
c49b21b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 |
import sys
import os
import numpy as np
import pandas as pd
from datetime import datetime
# Ensure src/merge is in the path for import
sys.path.append(os.path.dirname(__file__))
from alpaca_features import build_features, save
def create_symbol_mapping():
"""
Create mapping between crypto full names and ticker symbols.
"""
# Common crypto symbol mappings
crypto_mapping = {
# Major cryptocurrencies
'bitcoin': 'BTC',
'ethereum': 'ETH',
'binancecoin': 'BNB',
'ripple': 'XRP',
'cardano': 'ADA',
'solana': 'SOL',
'dogecoin': 'DOGE',
'polkadot': 'DOT',
'matic-network': 'MATIC',
'polygon': 'MATIC',
'avalanche-2': 'AVAX',
'avalanche': 'AVAX',
'chainlink': 'LINK',
'litecoin': 'LTC',
'bitcoin-cash': 'BCH',
'stellar': 'XLM',
'vechain': 'VET',
'ethereum-classic': 'ETC',
'filecoin': 'FIL',
'tron': 'TRX',
'monero': 'XMR',
'eos': 'EOS',
'aave': 'AAVE',
'maker': 'MKR',
'compound': 'COMP',
'uniswap': 'UNI',
'yearn-finance': 'YFI',
'sushi': 'SUSHI',
'curve-dao-token': 'CRV',
'pancakeswap-token': 'CAKE',
'terra-luna': 'LUNA',
'fantom': 'FTM',
'harmony': 'ONE',
'near': 'NEAR',
'algorand': 'ALGO',
'cosmos': 'ATOM',
'internet-computer': 'ICP',
'helium': 'HNT',
'theta-token': 'THETA',
'chiliz': 'CHZ',
'decentraland': 'MANA',
'the-sandbox': 'SAND',
'axie-infinity': 'AXS',
'shiba-inu': 'SHIB',
'apecoin': 'APE',
'gala': 'GALA',
'enjincoin': 'ENJ',
'flow': 'FLOW',
'basic-attention-token': 'BAT',
'omg': 'OMG',
'loopring': 'LRC',
'immutable-x': 'IMX',
'render-token': 'RNDR',
'quant-network': 'QNT',
'injective-protocol': 'INJ',
'sei-network': 'SEI',
'arbitrum': 'ARB',
'optimism': 'OP',
'blur': 'BLUR',
'pepe': 'PEPE',
'bonk': 'BONK',
'wormhole': 'W',
'jupiter-exchange-solana': 'JUP',
'worldcoin-wld': 'WLD',
'pyth-network': 'PYTH',
'jito': 'JTO',
'tensor': 'TNSR',
'meme': 'MEME',
'cat-in-a-dogs-world': 'MEW',
'book-of-meme': 'BOME',
'dogwifhat': 'WIF',
'popcat': 'POPCAT',
'goatseus-maximus': 'GOAT',
'peanut-the-squirrel': 'PNUT',
'act-i-the-ai-prophecy': 'ACT',
'fartcoin': 'FARTCOIN',
'ai16z': 'AI16Z',
'virtual-protocol': 'VIRTUAL',
'zerebro': 'ZEREBRO',
'griffain': 'GRIFFAIN',
'aixbt-by-virtuals': 'AIXBT',
'marc-and-ethan-are-based': 'BASED',
'pudgy-penguins': 'PENGU',
'hyperliquid': 'HYPE',
'move-movement': 'MOVE',
'usual': 'USUAL',
'reserve-rights': 'RSR',
'ondo-finance': 'ONDO',
'ethena': 'ENA',
'eigenlayer': 'EIGEN',
'grass': 'GRASS',
'io': 'IO',
'notcoin': 'NOT',
'turbo': 'TURBO',
'jasmy': 'JASMY',
'neo': 'NEO',
'iota': 'IOTA',
'dash': 'DASH',
'zcash': 'ZEC',
'waves': 'WAVES',
}
# Create reverse mapping (ticker -> full name)
reverse_mapping = {v.lower(): k for k, v in crypto_mapping.items()}
# Also add the forward mapping (full name -> ticker)
forward_mapping = {k: v.lower() for k, v in crypto_mapping.items()}
return crypto_mapping, reverse_mapping, forward_mapping
def normalize_symbols(df, symbol_col, is_alpaca=False):
"""
Normalize symbols to handle crypto name/ticker differences and stock symbols.
"""
df = df.copy()
crypto_mapping, reverse_mapping, forward_mapping = create_symbol_mapping()
# Convert to lowercase for consistency
df[symbol_col] = df[symbol_col].str.lower()
if is_alpaca:
# Alpaca uses tickers (BTC, ETH, etc. for crypto, NVDA, AAPL, etc. for stocks)
# For crypto: Map tickers to full names to match merged data
# For stocks: Keep the ticker symbol as-is (in lowercase)
def map_alpaca_symbol(symbol):
symbol_lower = symbol.lower()
# Check if it's a crypto ticker that needs mapping
if symbol_lower in reverse_mapping:
return reverse_mapping[symbol_lower]
else:
# It's likely a stock symbol, keep as-is (lowercase)
return symbol_lower
df[symbol_col] = df[symbol_col].apply(map_alpaca_symbol)
else:
# Merged data uses full names for crypto (bitcoin, ethereum, etc.)
# and should use lowercase tickers for stocks (nvda, aapl, etc.)
# Keep as is, but ensure lowercase
pass
return df
def merge_alpaca_features():
"""
Merge Alpaca features with existing merged features.
Handles timestamp alignment, column conflicts, and symbol mapping.
"""
# Step 1: Create Alpaca features
alpaca_df = build_features()
save(alpaca_df)
# Step 2: Load merged features
try:
from src import config as app_config
base_dir = app_config.DATA_DIR
except Exception:
base_dir = os.environ.get("DATA_DIR", "/data")
merged_path = os.path.join(base_dir, "merged", "features", "merged_features.parquet")
merged_df = pd.read_parquet(merged_path)
# Normalize symbols
alpaca_df_normalized = normalize_symbols(alpaca_df, "symbol", is_alpaca=True)
merged_df_normalized = normalize_symbols(merged_df, "symbol", is_alpaca=False)
# Find overlapping symbols
alpaca_normalized = set(alpaca_df_normalized["symbol"].unique())
merged_normalized = set(merged_df_normalized["symbol"].unique())
overlapping_symbols = alpaca_normalized.intersection(merged_normalized)
missing_in_merged = alpaca_normalized - merged_normalized
# Step 6: Handle symbols that exist only in Alpaca data
if missing_in_merged:
new_symbol_rows = []
for missing_symbol in missing_in_merged:
# Get actual data for this symbol from Alpaca
symbol_data = alpaca_df_normalized[alpaca_df_normalized["symbol"] == missing_symbol]
if len(symbol_data) == 0:
continue
# Create rows based on Alpaca timestamps, not merged timestamps
for _, alpaca_row in symbol_data.iterrows():
new_row = {
"symbol": missing_symbol,
"interval_timestamp": alpaca_row["timestamp"], # Use Alpaca timestamp
"is_stock": True if missing_symbol.upper() in ["NVDA", "AAPL", "GOOGL", "MSFT", "TSLA", "AMZN", "META"] else False,
"is_crypto": False if missing_symbol.upper() in ["NVDA", "AAPL", "GOOGL", "MSFT", "TSLA", "AMZN", "META"] else True,
"stock_market": "NASDAQ" if missing_symbol.upper() in ["NVDA", "AAPL", "GOOGL", "MSFT", "TSLA", "AMZN", "META"] else None,
"feature_timestamp": pd.Timestamp.now().value // 1000000, # Convert to milliseconds
}
# Copy all Alpaca feature columns into the new row
for col in alpaca_row.index:
if col not in new_row:
new_row[col] = alpaca_row[col]
# Add all other columns from merged_df with NaN values (except the ones we set above)
for col in merged_df_normalized.columns:
if col not in new_row:
new_row[col] = np.nan
new_symbol_rows.append(new_row)
if new_symbol_rows:
new_symbols_df = pd.DataFrame(new_symbol_rows)
merged_df_normalized = pd.concat([merged_df_normalized, new_symbols_df], ignore_index=True)
# Step 7: Check for overlapping columns and handle them
join_keys = ["symbol", "timestamp", "interval_timestamp"]
alpaca_cols = set(alpaca_df_normalized.columns) - set(join_keys)
merged_cols = set(merged_df_normalized.columns) - set(join_keys)
overlapping_cols = alpaca_cols.intersection(merged_cols)
# Convert timestamps to datetime for processing (use pd.concat to avoid fragmentation)
timestamp_columns = {}
if "timestamp" in alpaca_df_normalized.columns:
timestamp_columns["timestamp_dt"] = pd.to_datetime(alpaca_df_normalized["timestamp"], unit="ms")
if "interval_timestamp" in merged_df_normalized.columns:
timestamp_columns["interval_timestamp_dt"] = pd.to_datetime(merged_df_normalized["interval_timestamp"], unit="ms")
# Add timestamp columns efficiently using pd.concat
if timestamp_columns:
for col_name, col_data in timestamp_columns.items():
if col_name == "timestamp_dt" and "timestamp" in alpaca_df_normalized.columns:
alpaca_df_normalized = pd.concat([alpaca_df_normalized, col_data.to_frame(col_name)], axis=1)
elif col_name == "interval_timestamp_dt" and "interval_timestamp" in merged_df_normalized.columns:
merged_df_normalized = pd.concat([merged_df_normalized, col_data.to_frame(col_name)], axis=1)
# Perform an OUTER merge to capture all data from both sources
final_merge = pd.merge(
merged_df_normalized,
alpaca_df_normalized,
left_on=["symbol", "interval_timestamp"],
right_on=["symbol", "timestamp"],
how="outer", # Changed from "left" to "outer"
suffixes=("", "_alpaca")
)
# For rows that came only from Alpaca (new symbols), copy the timestamp to interval_timestamp
alpaca_only_mask = final_merge["interval_timestamp"].isna() & final_merge["timestamp"].notna()
if alpaca_only_mask.any():
final_merge.loc[alpaca_only_mask, "interval_timestamp"] = final_merge.loc[alpaca_only_mask, "timestamp"]
# Set basic metadata for these new rows
final_merge.loc[alpaca_only_mask, "feature_timestamp"] = pd.Timestamp.now().value // 1000000
# Set stock/crypto flags based on symbol
for symbol in final_merge.loc[alpaca_only_mask, "symbol"].unique():
symbol_mask = alpaca_only_mask & (final_merge["symbol"] == symbol)
is_stock = symbol.upper() in ["NVDA", "AAPL", "GOOGL", "MSFT", "TSLA", "AMZN", "META"]
final_merge.loc[symbol_mask, "is_stock"] = is_stock
final_merge.loc[symbol_mask, "is_crypto"] = not is_stock
if is_stock:
final_merge.loc[symbol_mask, "stock_market"] = "NASDAQ"
# Copy _alpaca columns into base columns for Alpaca-only rows
feature_cols = [
"open", "high", "low", "close", "volume", "trade_count", "vwap",
"symbol_quote", "bid_price", "bid_size", "bid_exchange", "ask_price", "ask_size", "ask_exchange",
"conditions", "tape", "symbol_trade", "exchange", "price", "size", "id", "conditions_trade", "tape_trade"
]
for col in feature_cols:
alpaca_col = f"{col}_alpaca"
if alpaca_col in final_merge.columns and col in final_merge.columns:
final_merge.loc[alpaca_only_mask, col] = final_merge.loc[alpaca_only_mask, alpaca_col]
# Step 11: Calculate merge statistics
total_merged_rows = len(merged_df_normalized)
total_alpaca_rows = len(alpaca_df_normalized)
total_final_rows = len(final_merge)
# Count matches from original merged data
original_matched_rows = final_merge[
final_merge["timestamp"].notna() &
final_merge["interval_timestamp"].notna() &
(final_merge["interval_timestamp"] != final_merge["timestamp"])
].shape[0]
# Count new rows from Alpaca-only symbols
alpaca_only_rows = final_merge[
final_merge["timestamp"].notna() &
(final_merge["interval_timestamp"] == final_merge["timestamp"])
].shape[0]
# Total rows with Alpaca data
total_alpaca_matched = final_merge[final_merge["timestamp"].notna()].shape[0]
original_match_rate = original_matched_rows / total_merged_rows if total_merged_rows > 0 else 0
overall_match_rate = total_alpaca_matched / total_final_rows if total_final_rows > 0 else 0
# Step 12: Debug successful matches and new symbols
if total_alpaca_matched > 0:
successful_matches = final_merge[final_merge["timestamp"].notna()]
sample_cols = ["symbol", "interval_timestamp", "timestamp", "open", "high", "low", "close", "volume"]
available_cols = [col for col in sample_cols if col in successful_matches.columns]
# Step 13: Add merge metadata
final_merge["alpaca_merge_timestamp"] = pd.Timestamp.now().value // 1000000 # Convert to milliseconds
final_merge["alpaca_data_available"] = final_merge["timestamp"].notna()
final_merge["alpaca_match_rate"] = overall_match_rate
final_merge["is_new_symbol"] = final_merge["interval_timestamp"] == final_merge["timestamp"]
# Step 14: Handle duplicate columns before saving
duplicate_cols = final_merge.columns[final_merge.columns.duplicated()].tolist()
if duplicate_cols:
final_merge = final_merge.loc[:, ~final_merge.columns.duplicated()]
# Save the merged features
out_path = os.path.join(base_dir, "merged", "features", "merged_features.parquet")
final_merge.to_parquet(out_path, index=False)
# Generate detailed summary report
print(f"Total final rows: {len(final_merge)}")
print(f"Rows with Alpaca data: {total_alpaca_matched}")
print(f"New symbols added: {alpaca_only_rows}")
print(f"Overall match rate: {overall_match_rate:.2%}")
print(f"Total columns: {len(final_merge.columns)}")
# Show symbols with and without Alpaca data
symbol_summary = final_merge.groupby("symbol").agg({
"alpaca_data_available": ["count", "sum"],
"is_new_symbol": "sum"
}).round(2)
symbol_summary.columns = ["total_rows", "alpaca_matches", "new_symbol_rows"]
symbol_summary["match_rate"] = symbol_summary["alpaca_matches"] / symbol_summary["total_rows"]
symbol_summary["is_new_symbol"] = symbol_summary["new_symbol_rows"] > 0
# Show which symbols have complete data
complete_symbols = symbol_summary[symbol_summary["match_rate"] > 0.5]
if len(complete_symbols) > 0:
print(complete_symbols[["total_rows", "alpaca_matches", "match_rate"]])
# Show sample of final merged data
sample_cols = ["symbol", "interval_timestamp", "alpaca_data_available", "is_new_symbol", "open", "high", "low", "close", "volume"]
return final_merge
if __name__ == "__main__":
try:
merged_df = merge_alpaca_features()
except Exception as e:
import traceback
traceback.print_exc() |