Spaces:
Sleeping
Sleeping
debug3
Browse files- model_loader.py +23 -12
model_loader.py
CHANGED
|
@@ -4,6 +4,10 @@ from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
| 4 |
from peft import PeftModel
|
| 5 |
from config import BASE_MODEL, ADAPTERS, DEVICE, HF_TOKEN
|
| 6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
def get_current_branch():
|
| 8 |
if os.path.exists("current_branch.txt"):
|
| 9 |
with open("current_branch.txt", "r") as f:
|
|
@@ -12,49 +16,54 @@ def get_current_branch():
|
|
| 12 |
|
| 13 |
class ModelWrapper:
|
| 14 |
def __init__(self):
|
| 15 |
-
# Flags μ 보
|
| 16 |
flags_path = os.path.join(os.path.dirname(__file__), "flags.json")
|
| 17 |
self.flags_order = json.load(open(flags_path, encoding="utf-8"))["ALL_FLAGS"]
|
| 18 |
self.num_flags = len(self.flags_order)
|
| 19 |
|
| 20 |
-
#
|
| 21 |
self.tokenizer = AutoTokenizer.from_pretrained(
|
| 22 |
BASE_MODEL,
|
| 23 |
use_fast=True,
|
| 24 |
-
token=HF_TOKEN
|
|
|
|
| 25 |
)
|
| 26 |
if self.tokenizer.pad_token is None:
|
| 27 |
self.tokenizer.pad_token = self.tokenizer.eos_token
|
| 28 |
self.tokenizer.padding_side = "right"
|
|
|
|
|
|
|
| 29 |
|
| 30 |
-
# λ² μ΄μ€ λͺ¨λΈ λ‘λ
|
| 31 |
-
branch = get_current_branch()
|
| 32 |
base = AutoModelForCausalLM.from_pretrained(
|
| 33 |
BASE_MODEL,
|
| 34 |
-
device_map=
|
|
|
|
| 35 |
trust_remote_code=True,
|
| 36 |
token=HF_TOKEN
|
| 37 |
)
|
| 38 |
|
| 39 |
-
|
|
|
|
| 40 |
|
| 41 |
-
# LoRA μ΄λν° μ μ©
|
|
|
|
| 42 |
self.model = PeftModel.from_pretrained(
|
| 43 |
base,
|
| 44 |
ADAPTERS,
|
| 45 |
revision=branch,
|
| 46 |
-
device_map=
|
|
|
|
| 47 |
token=HF_TOKEN
|
| 48 |
)
|
| 49 |
|
| 50 |
-
|
| 51 |
-
# 컀μ€ν
ν€λ μΆκ°
|
| 52 |
hidden_size = self.model.config.hidden_size
|
| 53 |
self.model.delta_head = nn.Linear(hidden_size, 2).to(DEVICE)
|
| 54 |
self.model.flag_head = nn.Linear(hidden_size, self.num_flags).to(DEVICE)
|
| 55 |
self.model.flag_threshold_head = nn.Linear(hidden_size, self.num_flags).to(DEVICE)
|
| 56 |
|
| 57 |
-
#
|
| 58 |
for head_name, file_name in [
|
| 59 |
("delta_head", "delta_head.pt"),
|
| 60 |
("flag_head", "flag_head.pt"),
|
|
@@ -68,6 +77,8 @@ class ModelWrapper:
|
|
| 68 |
except Exception as e:
|
| 69 |
print(f"[WARN] Failed to load {file_name}: {e}")
|
| 70 |
|
|
|
|
|
|
|
| 71 |
self.model.eval()
|
| 72 |
|
| 73 |
def get(self):
|
|
|
|
| 4 |
from peft import PeftModel
|
| 5 |
from config import BASE_MODEL, ADAPTERS, DEVICE, HF_TOKEN
|
| 6 |
|
| 7 |
+
ADAPTER_VOCAB_SIZE = 151672 # νμ΅ μμ vocab size (λ‘κ·Έ κΈ°μ€)
|
| 8 |
+
|
| 9 |
+
SPECIALS = ["<SYS>", "<CTX>", "<PLAYER>", "<NPC>", "<STATE>", "<RAG>", "<PLAYER_STATE>"]
|
| 10 |
+
|
| 11 |
def get_current_branch():
|
| 12 |
if os.path.exists("current_branch.txt"):
|
| 13 |
with open("current_branch.txt", "r") as f:
|
|
|
|
| 16 |
|
| 17 |
class ModelWrapper:
|
| 18 |
def __init__(self):
|
| 19 |
+
# Flags μ 보
|
| 20 |
flags_path = os.path.join(os.path.dirname(__file__), "flags.json")
|
| 21 |
self.flags_order = json.load(open(flags_path, encoding="utf-8"))["ALL_FLAGS"]
|
| 22 |
self.num_flags = len(self.flags_order)
|
| 23 |
|
| 24 |
+
# 1) ν ν¬λμ΄μ (νμ΅κ³Ό λμΌ μ΅μ
+ SPECIALS)
|
| 25 |
self.tokenizer = AutoTokenizer.from_pretrained(
|
| 26 |
BASE_MODEL,
|
| 27 |
use_fast=True,
|
| 28 |
+
token=HF_TOKEN,
|
| 29 |
+
trust_remote_code=True
|
| 30 |
)
|
| 31 |
if self.tokenizer.pad_token is None:
|
| 32 |
self.tokenizer.pad_token = self.tokenizer.eos_token
|
| 33 |
self.tokenizer.padding_side = "right"
|
| 34 |
+
# νμ΅ μ μΆκ°νλ νΉμ ν ν° μ¬ν
|
| 35 |
+
self.tokenizer.add_special_tokens({"additional_special_tokens": SPECIALS})
|
| 36 |
|
| 37 |
+
# 2) λ² μ΄μ€ λͺ¨λΈ (μ€νλ‘λ© λκ³ λ‘λ)
|
|
|
|
| 38 |
base = AutoModelForCausalLM.from_pretrained(
|
| 39 |
BASE_MODEL,
|
| 40 |
+
device_map=None, # β
μ€νλ‘λ© λΉνμ±ν
|
| 41 |
+
low_cpu_mem_usage=False, # β
meta ν
μ μμ± λ°©μ§
|
| 42 |
trust_remote_code=True,
|
| 43 |
token=HF_TOKEN
|
| 44 |
)
|
| 45 |
|
| 46 |
+
# 3) νμ΅ μ vocab sizeλ‘ κ°μ 리μ¬μ΄μ¦ (μ΄λν° λ‘λ μ μ)
|
| 47 |
+
base.resize_token_embeddings(ADAPTER_VOCAB_SIZE)
|
| 48 |
|
| 49 |
+
# 4) LoRA μ΄λν° μ μ© (μ€νλ‘λ© λκ³ λ‘λ)
|
| 50 |
+
branch = get_current_branch()
|
| 51 |
self.model = PeftModel.from_pretrained(
|
| 52 |
base,
|
| 53 |
ADAPTERS,
|
| 54 |
revision=branch,
|
| 55 |
+
device_map=None, # β
μ€νλ‘λ© λΉνμ±ν
|
| 56 |
+
low_cpu_mem_usage=False, # β
meta ν
μ μμ± λ°©μ§
|
| 57 |
token=HF_TOKEN
|
| 58 |
)
|
| 59 |
|
| 60 |
+
# 5) 컀μ€ν
ν€λ
|
|
|
|
| 61 |
hidden_size = self.model.config.hidden_size
|
| 62 |
self.model.delta_head = nn.Linear(hidden_size, 2).to(DEVICE)
|
| 63 |
self.model.flag_head = nn.Linear(hidden_size, self.num_flags).to(DEVICE)
|
| 64 |
self.model.flag_threshold_head = nn.Linear(hidden_size, self.num_flags).to(DEVICE)
|
| 65 |
|
| 66 |
+
# 6) 컀μ€ν
ν€λ κ°μ€μΉ λ‘λ(μμ κ²½μ°)
|
| 67 |
for head_name, file_name in [
|
| 68 |
("delta_head", "delta_head.pt"),
|
| 69 |
("flag_head", "flag_head.pt"),
|
|
|
|
| 77 |
except Exception as e:
|
| 78 |
print(f"[WARN] Failed to load {file_name}: {e}")
|
| 79 |
|
| 80 |
+
# 7) λλ°μ΄μ€ λ°°μΉ
|
| 81 |
+
self.model.to(DEVICE)
|
| 82 |
self.model.eval()
|
| 83 |
|
| 84 |
def get(self):
|