PersonaChatEngine_hf-serve / model_loader.py
m97j's picture
test case update
3d8218a
raw
history blame
2.93 kB
import os, json, torch
import torch.nn as nn
from transformers import AutoTokenizer, AutoModelForCausalLM
from config import DEVICE, HF_TOKEN
SPECIALS = ["<SYS>", "<CTX>", "<PLAYER>", "<NPC>", "<STATE>", "<RAG>", "<PLAYER_STATE>"]
def get_current_branch():
if os.path.exists("current_branch.txt"):
with open("current_branch.txt", "r") as f:
return f.read().strip()
return "latest"
class ModelWrapper:
def __init__(self):
# Flags ์ •๋ณด
flags_path = os.path.join(os.path.dirname(__file__), "flags.json")
self.flags_order = json.load(open(flags_path, encoding="utf-8"))["ALL_FLAGS"]
self.num_flags = len(self.flags_order)
branch = get_current_branch()
# 1) ํ† ํฌ๋‚˜์ด์ € (ํ•™์Šต ๋‹น์‹œ vocab + SPECIALS)
self.tokenizer = AutoTokenizer.from_pretrained(
"m97j/npc_LoRA-fps", # ๋ณ‘ํ•ฉ๋œ ๋ชจ๋ธ์ด ์˜ฌ๋ผ๊ฐ„ repo
revision=branch,
subfolder="testcase_output", # ๋ณ‘ํ•ฉ๋œ ๋ชจ๋ธ์ด ์˜ฌ๋ผ๊ฐ„ ๊ฒฝ๋กœ
use_fast=True,
token=HF_TOKEN,
trust_remote_code=True
)
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
self.tokenizer.padding_side = "right"
self.tokenizer.add_special_tokens({"additional_special_tokens": SPECIALS})
# 2) ๋ณ‘ํ•ฉ๋œ ๋ชจ๋ธ ๋กœ๋“œ (์ƒค๋“œ ์ž๋™ ์ธ์‹)
self.model = AutoModelForCausalLM.from_pretrained(
"m97j/npc_LoRA-fps", # ๋ณ‘ํ•ฉ๋œ ๋ชจ๋ธ์ด ์˜ฌ๋ผ๊ฐ„ repo
revision=branch,
subfolder="testcase_output", # ๋ณ‘ํ•ฉ๋œ ๋ชจ๋ธ์ด ์˜ฌ๋ผ๊ฐ„ ๊ฒฝ๋กœ
device_map=None, # ์˜คํ”„๋กœ๋”ฉ ๋น„ํ™œ์„ฑํ™”
low_cpu_mem_usage=False,
trust_remote_code=True,
token=HF_TOKEN
)
# 3) ์ปค์Šคํ…€ ํ—ค๋“œ ์ถ”๊ฐ€
hidden_size = self.model.config.hidden_size
self.model.delta_head = nn.Linear(hidden_size, 2).to(DEVICE)
self.model.flag_head = nn.Linear(hidden_size, self.num_flags).to(DEVICE)
self.model.flag_threshold_head = nn.Linear(hidden_size, self.num_flags).to(DEVICE)
# 4) ์ปค์Šคํ…€ ํ—ค๋“œ ๊ฐ€์ค‘์น˜ ๋กœ๋“œ
for head_name, file_name in [
("delta_head", "delta_head.pt"),
("flag_head", "flag_head.pt"),
("flag_threshold_head", "flag_threshold_head.pt")
]:
try:
if os.path.exists(file_name):
getattr(self.model, head_name).load_state_dict(
torch.load(file_name, map_location=DEVICE)
)
except Exception as e:
print(f"[WARN] Failed to load {file_name}: {e}")
# 5) ๋””๋ฐ”์ด์Šค ๋ฐฐ์น˜
self.model.to(DEVICE)
self.model.eval()
def get(self):
return self.tokenizer, self.model, self.flags_order