Spaces:
Build error
Build error
Create app_optimized.py
Browse files- app_optimized.py +344 -0
app_optimized.py
ADDED
|
@@ -0,0 +1,344 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import safetensors.torch
|
| 3 |
+
import torchvision.transforms.v2 as transforms
|
| 4 |
+
import cv2
|
| 5 |
+
import torch
|
| 6 |
+
from torch.utils.bottleneck import BottleNeck
|
| 7 |
+
import numpy as np
|
| 8 |
+
from typing import List, Optional, Tuple, Union
|
| 9 |
+
from PIL import Image
|
| 10 |
+
import io
|
| 11 |
+
from io import BytesIO
|
| 12 |
+
from diffusers import HunyuanVideoPipeline, FlowMatchEulerDiscreteScheduler
|
| 13 |
+
from diffusers.models.transformers.transformer_hunyuan_video import HunyuanVideoPatchEmbed, HunyuanVideoTransformer3DModel
|
| 14 |
+
from diffusers.utils import export_to_video
|
| 15 |
+
from diffusers.models.attention import Attention
|
| 16 |
+
from diffusers.utils.state_dict_utils import convert_state_dict_to_diffusers, convert_unet_state_dict_to_peft
|
| 17 |
+
from peft import LoraConfig, get_peft_model_state_dict, set_peft_model_state_dict
|
| 18 |
+
from diffusers.models.embeddings import apply_rotary_emb
|
| 19 |
+
from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
|
| 20 |
+
from diffusers.loaders import HunyuanVideoLoraLoaderMixin
|
| 21 |
+
from diffusers.models import AutoencoderKLHunyuanVideo, HunyuanVideoTransformer3DModel
|
| 22 |
+
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
|
| 23 |
+
from diffusers.utils import is_torch_xla_available, logging, replace_example_docstring
|
| 24 |
+
from diffusers.utils.torch_utils import randn_tensor
|
| 25 |
+
from diffusers.video_processor import VideoProcessor
|
| 26 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
| 27 |
+
from diffusers.pipelines.hunyuan_video.pipeline_output import HunyuanVideoPipelineOutput
|
| 28 |
+
from diffusers.pipelines.hunyuan_video.pipeline_hunyuan_video import retrieve_timesteps, DEFAULT_PROMPT_TEMPLATE
|
| 29 |
+
from diffusers.utils import load_image
|
| 30 |
+
from huggingface_hub import hf_hub_download
|
| 31 |
+
import requests
|
| 32 |
+
import io
|
| 33 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 34 |
+
# Define video transformations
|
| 35 |
+
video_transforms = transforms.Compose(
|
| 36 |
+
[
|
| 37 |
+
transforms.Lambda(lambda x: x / 255.0),
|
| 38 |
+
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True),
|
| 39 |
+
]
|
| 40 |
+
)
|
| 41 |
+
model_id = "hunyuanvideo-community/HunyuanVideo"
|
| 42 |
+
lora_path = hf_hub_download("dashtoon/hunyuan-video-keyframe-control-lora", "i2v.sft") # Replace with the actual LORA path
|
| 43 |
+
transformer = HunyuanVideoTransformer3DModel.from_pretrained(model_id, subfolder="transformer", torch_dtype=torch.float16)
|
| 44 |
+
global pipe
|
| 45 |
+
pipe = HunyuanVideoPipeline.from_pretrained(model_id, transformer=transformer, torch_dtype=torch.float16)
|
| 46 |
+
|
| 47 |
+
# Enable memory savings
|
| 48 |
+
pipe.vae.enable_tiling()
|
| 49 |
+
pipe.enable_model_cpu_offload()
|
| 50 |
+
|
| 51 |
+
with torch.no_grad(): # enable image inputs
|
| 52 |
+
initial_input_channels = pipe.transformer.config.in_channels
|
| 53 |
+
new_img_in = HunyuanVideoPatchEmbed(
|
| 54 |
+
patch_size=(pipe.transformer.config.patch_size_t, pipe.transformer.config.patch_size, pipe.transformer.config.patch_size),
|
| 55 |
+
in_chans=pipe.transformer.config.in_channels * 2,
|
| 56 |
+
embed_dim=pipe.transformer.config.num_attention_heads * pipe.transformer.config.attention_head_dim,
|
| 57 |
+
)
|
| 58 |
+
new_img_in = new_img_in.to(pipe.device, dtype=pipe.dtype)
|
| 59 |
+
new_img_in.proj.weight.zero_()
|
| 60 |
+
new_img_in.proj.weight[:, :initial_input_channels].copy_(pipe.transformer.x_embedder.proj.weight)
|
| 61 |
+
if pipe.transformer.x_embedder.proj.bias is not None:
|
| 62 |
+
new_img_in.proj.bias.copy_(pipe.transformer.x_embedder.proj.bias)
|
| 63 |
+
pipe.transformer.x_embedder = new_img_in
|
| 64 |
+
|
| 65 |
+
lora_state_dict = safetensors.torch.load_file(lora_path, device="cpu")
|
| 66 |
+
transformer_lora_state_dict = {f'{k.replace("transformer.", "")}': v for k, v in lora_state_dict.items() if k.startswith("transformer.") and "lora" in k}
|
| 67 |
+
pipe.load_lora_into_transformer(transformer_lora_state_dict, transformer=pipe.transformer, adapter_name="i2v", _pipeline=pipe)
|
| 68 |
+
pipe.set_adapters(["i2v"], adapter_weights=[1.0])
|
| 69 |
+
pipe.fuse_lora(components=["transformer"], lora_scale=1.0, adapter_names=["i2v"])
|
| 70 |
+
pipe.unload_lora_weights()
|
| 71 |
+
|
| 72 |
+
def resize_image_to_bucket(image: Union[Image.Image, np.ndarray], bucket_reso: Tuple[int, int]) -> np.ndarray:
|
| 73 |
+
"""
|
| 74 |
+
Resize the image to the bucket resolution.
|
| 75 |
+
"""
|
| 76 |
+
if isinstance(image, Image.Image):
|
| 77 |
+
image = np.array(image)
|
| 78 |
+
elif not isinstance(image, np.ndarray):
|
| 79 |
+
raise ValueError("Image must be a PIL Image or NumPy array")
|
| 80 |
+
|
| 81 |
+
image_height, image_width = image.shape[:2]
|
| 82 |
+
if bucket_reso == (image_width, image_height):
|
| 83 |
+
return image
|
| 84 |
+
bucket_width, bucket_height = bucket_reso
|
| 85 |
+
scale_width = bucket_width / image_width
|
| 86 |
+
scale_height = bucket_height / image_height
|
| 87 |
+
scale = max(scale_width, scale_height)
|
| 88 |
+
image_width = int(image_width * scale + 0.5)
|
| 89 |
+
image_height = int(image_height * scale + 0.5)
|
| 90 |
+
if scale > 1:
|
| 91 |
+
image = Image.fromarray(image)
|
| 92 |
+
image = image.resize((image_width, image_height), Image.LANCZOS)
|
| 93 |
+
image = np.array(image)
|
| 94 |
+
else:
|
| 95 |
+
image = cv2.resize(image, (image_width, image_height), interpolation=cv2.INTER_AREA)
|
| 96 |
+
# crop the image to the bucket resolution
|
| 97 |
+
crop_left = (image_width - bucket_width) // 2
|
| 98 |
+
crop_top = (image_height - bucket_height) // 2
|
| 99 |
+
image = image[crop_top:crop_top + bucket_height, crop_left:crop_left + bucket_width]
|
| 100 |
+
return image
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
def generate_video(prompt: str, frame1: Image.Image, frame2: Image.Image, resolution: str, guidance_scale: float, num_frames: int, num_inference_steps: int, fps: int) -> bytes:
|
| 105 |
+
# Debugging print statements
|
| 106 |
+
print(f"Frame 1 Type: {type(frame1)}")
|
| 107 |
+
print(f"Frame 2 Type: {type(frame2)}")
|
| 108 |
+
print(f"Resolution: {resolution}")
|
| 109 |
+
|
| 110 |
+
# Parse resolution
|
| 111 |
+
width, height = map(int, resolution.split('x'))
|
| 112 |
+
|
| 113 |
+
# Load and preprocess frames
|
| 114 |
+
cond_frame1 = np.array(frame1)
|
| 115 |
+
cond_frame2 = np.array(frame2)
|
| 116 |
+
cond_frame1 = resize_image_to_bucket(cond_frame1, bucket_reso=(width, height))
|
| 117 |
+
cond_frame2 = resize_image_to_bucket(cond_frame2, bucket_reso=(width, height))
|
| 118 |
+
cond_video = np.zeros(shape=(num_frames, height, width, 3))
|
| 119 |
+
cond_video[0], cond_video[-1] = cond_frame1, cond_frame2
|
| 120 |
+
cond_video = torch.from_numpy(cond_video.copy()).permute(0, 3, 1, 2)
|
| 121 |
+
cond_video = torch.stack([video_transforms(x) for x in cond_video], dim=0).unsqueeze(0)
|
| 122 |
+
with torch.no_grad():
|
| 123 |
+
image_or_video = cond_video.to(device="cuda", dtype=pipe.dtype)
|
| 124 |
+
image_or_video = image_or_video.permute(0, 2, 1, 3, 4).contiguous() # [B, F, C, H, W] -> [B, C, F, H, W]
|
| 125 |
+
cond_latents = pipe.vae.encode(image_or_video).latent_dist.sample()
|
| 126 |
+
cond_latents = cond_latents * pipe.vae.config.scaling_factor
|
| 127 |
+
cond_latents = cond_latents.to(device=device, dtype=pipe.dtype)
|
| 128 |
+
assert not torch.any(torch.isnan(cond_latents))
|
| 129 |
+
# Generate video
|
| 130 |
+
video = call_pipe(
|
| 131 |
+
pipe,
|
| 132 |
+
prompt=prompt,
|
| 133 |
+
num_frames=num_frames,
|
| 134 |
+
num_inference_steps=num_inference_steps,
|
| 135 |
+
image_latents=cond_latents,
|
| 136 |
+
width=width,
|
| 137 |
+
height=height,
|
| 138 |
+
guidance_scale=guidance_scale,
|
| 139 |
+
generator=torch.Generator(device="cuda").manual_seed(0),
|
| 140 |
+
).frames[0]
|
| 141 |
+
# Export to video
|
| 142 |
+
video_path = "output.mp4"
|
| 143 |
+
# video_bytes = io.BytesIO()
|
| 144 |
+
export_to_video(video, video_path, fps=fps)
|
| 145 |
+
torch.cuda.empty_cache()
|
| 146 |
+
return video_path
|
| 147 |
+
|
| 148 |
+
@torch.inference_mode()
|
| 149 |
+
def call_pipe(
|
| 150 |
+
pipe,
|
| 151 |
+
prompt: Union[str, List[str]] = None,
|
| 152 |
+
prompt_2: Union[str, List[str]] = None,
|
| 153 |
+
height: int = 720,
|
| 154 |
+
width: int = 1280,
|
| 155 |
+
num_frames: int = 129,
|
| 156 |
+
num_inference_steps: int = 50,
|
| 157 |
+
sigmas: Optional[List[float]] = None,
|
| 158 |
+
guidance_scale: float = 6.0,
|
| 159 |
+
num_videos_per_prompt: Optional[int] = 1,
|
| 160 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
| 161 |
+
latents: Optional[torch.Tensor] = None,
|
| 162 |
+
prompt_embeds: Optional[torch.Tensor] = None,
|
| 163 |
+
pooled_prompt_embeds: Optional[torch.Tensor] = None,
|
| 164 |
+
prompt_attention_mask: Optional[torch.Tensor] = None,
|
| 165 |
+
output_type: Optional[str] = "pil",
|
| 166 |
+
return_dict: bool = True,
|
| 167 |
+
attention_kwargs: Optional[dict] = None,
|
| 168 |
+
callback_on_step_end: Optional[Union[callable, PipelineCallback, MultiPipelineCallbacks]] = None,
|
| 169 |
+
callback_on_step_end_tensor_inputs: Optional[List[str]] = None,
|
| 170 |
+
prompt_template: Optional[dict] = DEFAULT_PROMPT_TEMPLATE,
|
| 171 |
+
max_sequence_length: int = 256,
|
| 172 |
+
image_latents: Optional[torch.Tensor] = None,
|
| 173 |
+
):
|
| 174 |
+
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
|
| 175 |
+
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
|
| 176 |
+
|
| 177 |
+
# 1. Check inputs. Raise error if not correct
|
| 178 |
+
pipe.check_inputs(
|
| 179 |
+
prompt,
|
| 180 |
+
prompt_2,
|
| 181 |
+
height,
|
| 182 |
+
width,
|
| 183 |
+
prompt_embeds,
|
| 184 |
+
callback_on_step_end_tensor_inputs,
|
| 185 |
+
prompt_template,
|
| 186 |
+
)
|
| 187 |
+
|
| 188 |
+
pipe._guidance_scale = guidance_scale
|
| 189 |
+
pipe._attention_kwargs = attention_kwargs
|
| 190 |
+
pipe._current_timestep = None
|
| 191 |
+
pipe._interrupt = False
|
| 192 |
+
device = pipe._execution_device
|
| 193 |
+
|
| 194 |
+
# 2. Define call parameters
|
| 195 |
+
if prompt is not None and isinstance(prompt, str):
|
| 196 |
+
batch_size = 1
|
| 197 |
+
elif prompt is not None and isinstance(prompt, list):
|
| 198 |
+
batch_size = len(prompt)
|
| 199 |
+
else:
|
| 200 |
+
batch_size = prompt_embeds.shape[0]
|
| 201 |
+
|
| 202 |
+
# 3. Encode input prompt
|
| 203 |
+
prompt_embeds, pooled_prompt_embeds, prompt_attention_mask = pipe.encode_prompt(
|
| 204 |
+
prompt=prompt,
|
| 205 |
+
prompt_2=prompt_2,
|
| 206 |
+
prompt_template=prompt_template,
|
| 207 |
+
num_videos_per_prompt=num_videos_per_prompt,
|
| 208 |
+
prompt_embeds=prompt_embeds,
|
| 209 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
| 210 |
+
prompt_attention_mask=prompt_attention_mask,
|
| 211 |
+
device=device,
|
| 212 |
+
max_sequence_length=max_sequence_length,
|
| 213 |
+
)
|
| 214 |
+
|
| 215 |
+
transformer_dtype = pipe.transformer.dtype
|
| 216 |
+
prompt_embeds = prompt_embeds.to(transformer_dtype)
|
| 217 |
+
prompt_attention_mask = prompt_attention_mask.to(transformer_dtype)
|
| 218 |
+
if pooled_prompt_embeds is not None:
|
| 219 |
+
pooled_prompt_embeds = pooled_prompt_embeds.to(transformer_dtype)
|
| 220 |
+
|
| 221 |
+
# 4. Prepare timesteps
|
| 222 |
+
sigmas = np.linspace(1.0, 0.0, num_inference_steps + 1)[:-1] if sigmas is None else sigmas
|
| 223 |
+
timesteps, num_inference_steps = retrieve_timesteps(
|
| 224 |
+
pipe.scheduler,
|
| 225 |
+
num_inference_steps,
|
| 226 |
+
device,
|
| 227 |
+
sigmas=sigmas,
|
| 228 |
+
)
|
| 229 |
+
|
| 230 |
+
# 5. Prepare latent variables
|
| 231 |
+
num_channels_latents = pipe.transformer.config.in_channels
|
| 232 |
+
num_latent_frames = (num_frames - 1) // pipe.vae_scale_factor_temporal + 1
|
| 233 |
+
latents = pipe.prepare_latents(
|
| 234 |
+
batch_size * num_videos_per_prompt,
|
| 235 |
+
num_channels_latents,
|
| 236 |
+
height,
|
| 237 |
+
width,
|
| 238 |
+
num_latent_frames,
|
| 239 |
+
torch.float32,
|
| 240 |
+
device,
|
| 241 |
+
generator,
|
| 242 |
+
latents,
|
| 243 |
+
)
|
| 244 |
+
|
| 245 |
+
# 6. Prepare guidance condition
|
| 246 |
+
guidance = torch.tensor([guidance_scale] * latents.shape[0], dtype=transformer_dtype, device=device) * 1000.0
|
| 247 |
+
|
| 248 |
+
# 7. Denoising loop
|
| 249 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * pipe.scheduler.order
|
| 250 |
+
pipe._num_timesteps = len(timesteps)
|
| 251 |
+
|
| 252 |
+
with pipe.progress_bar(total=num_inference_steps) as progress_bar:
|
| 253 |
+
for i, t in enumerate(timesteps):
|
| 254 |
+
if pipe.interrupt:
|
| 255 |
+
continue
|
| 256 |
+
pipe._current_timestep = t
|
| 257 |
+
latent_model_input = latents.to(transformer_dtype)
|
| 258 |
+
timestep = t.expand(latents.shape[0]).to(latents.dtype)
|
| 259 |
+
noise_pred = pipe.transformer(
|
| 260 |
+
hidden_states=torch.cat([latent_model_input, image_latents], dim=1),
|
| 261 |
+
timestep=timestep,
|
| 262 |
+
encoder_hidden_states=prompt_embeds,
|
| 263 |
+
encoder_attention_mask=prompt_attention_mask,
|
| 264 |
+
pooled_projections=pooled_prompt_embeds,
|
| 265 |
+
guidance=guidance,
|
| 266 |
+
attention_kwargs=attention_kwargs,
|
| 267 |
+
return_dict=False,
|
| 268 |
+
)[0]
|
| 269 |
+
|
| 270 |
+
# compute the previous noisy sample x_t -> x_t-1
|
| 271 |
+
latents = pipe.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
| 272 |
+
|
| 273 |
+
if callback_on_step_end is not None:
|
| 274 |
+
callback_kwargs = {}
|
| 275 |
+
for k in callback_on_step_end_tensor_inputs:
|
| 276 |
+
callback_kwargs[k] = locals()[k]
|
| 277 |
+
callback_outputs = callback_on_step_end(pipe, i, t, callback_kwargs)
|
| 278 |
+
latents = callback_outputs.pop("latents", latents)
|
| 279 |
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
| 280 |
+
|
| 281 |
+
# call the callback, if provided
|
| 282 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % pipe.scheduler.order == 0):
|
| 283 |
+
progress_bar.update()
|
| 284 |
+
|
| 285 |
+
pipe._current_timestep = None
|
| 286 |
+
if not output_type == "latent":
|
| 287 |
+
latents = latents.to(pipe.vae.dtype) / pipe.vae.config.scaling_factor
|
| 288 |
+
video = pipe.vae.decode(latents, return_dict=False)[0]
|
| 289 |
+
video = pipe.video_processor.postprocess_video(video, output_type=output_type)
|
| 290 |
+
else:
|
| 291 |
+
video = latents
|
| 292 |
+
|
| 293 |
+
# Offload all models
|
| 294 |
+
pipe.maybe_free_model_hooks()
|
| 295 |
+
|
| 296 |
+
if not return_dict:
|
| 297 |
+
return (video,)
|
| 298 |
+
return HunyuanVideoPipelineOutput(frames=video)
|
| 299 |
+
|
| 300 |
+
|
| 301 |
+
def main():
|
| 302 |
+
gr.Markdown(
|
| 303 |
+
"""
|
| 304 |
+
- https://i-bacon.bunkr.ru/11b45aa7-630b-4189-996f-a6b37a697786.png
|
| 305 |
+
- https://i-bacon.bunkr.ru/2382224f-120e-482d-a75d-f1a1bf13038c.png
|
| 306 |
+
""")
|
| 307 |
+
# Define the interface inputs
|
| 308 |
+
inputs = [
|
| 309 |
+
gr.Textbox(label="Prompt", value="a woman"),
|
| 310 |
+
gr.Image(label="Frame 1", type="pil"),
|
| 311 |
+
gr.Image(label="Frame 2", type="pil"),
|
| 312 |
+
gr.Dropdown(
|
| 313 |
+
label="Resolution",
|
| 314 |
+
choices=["720x1280", "544x960", "1280x720", "960x544", "720x720"],
|
| 315 |
+
value="544x960"
|
| 316 |
+
),
|
| 317 |
+
# gr.Textbox(label="Frame 1 URL", value="https://i-bacon.bunkr.ru/11b45aa7-630b-4189-996f-a6b37a697786.png"),
|
| 318 |
+
# gr.Textbox(label="Frame 2 URL", value="https://i-bacon.bunkr.ru/2382224f-120e-482d-a75d-f1a1bf13038c.png"),
|
| 319 |
+
gr.Slider(minimum=0.1, maximum=20, step=0.1, label="Guidance Scale", value=6.0),
|
| 320 |
+
gr.Slider(minimum=1, maximum=129, step=1, label="Number of Frames", value=49),
|
| 321 |
+
gr.Slider(minimum=1, maximum=100, step=1, label="Number of Inference Steps", value=30),
|
| 322 |
+
gr.Slider(minimum=1, maximum=60, step=1, label="FPS", value=16)
|
| 323 |
+
]
|
| 324 |
+
|
| 325 |
+
# Define the interface outputs
|
| 326 |
+
outputs = [
|
| 327 |
+
gr.Video(label="Generated Video"),
|
| 328 |
+
]
|
| 329 |
+
|
| 330 |
+
|
| 331 |
+
# Create the Gradio interface
|
| 332 |
+
iface = gr.Interface(
|
| 333 |
+
fn=generate_video,
|
| 334 |
+
inputs=inputs,
|
| 335 |
+
outputs=outputs,
|
| 336 |
+
title="Hunyuan Video Generator",
|
| 337 |
+
description="Generate videos using the HunyuanVideo model with a prompt and two frames as conditions.",
|
| 338 |
+
)
|
| 339 |
+
|
| 340 |
+
# Launch the Gradio app
|
| 341 |
+
iface.launch(show_error=True)
|
| 342 |
+
|
| 343 |
+
if __name__ == "__main__":
|
| 344 |
+
main()
|