deepseek / index.html
lzyhn's picture
Add 2 files
dfe74d0 verified
<!DOCTYPE html>
<html lang="zh-CN">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>DeepSeek V3 0324 部署指南</title>
<script src="https://cdn.tailwindcss.com"></script>
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.4.0/css/all.min.css">
<style>
.code-block {
background-color: #2d2d2d;
color: #f8f8f2;
padding: 1rem;
border-radius: 0.5rem;
font-family: 'Courier New', Courier, monospace;
overflow-x: auto;
margin: 1rem 0;
position: relative;
}
.copy-btn {
position: absolute;
right: 0.5rem;
top: 0.5rem;
background-color: #4a5568;
color: white;
border: none;
border-radius: 0.25rem;
padding: 0.25rem 0.5rem;
cursor: pointer;
font-size: 0.75rem;
}
.copy-btn:hover {
background-color: #2d3748;
}
.note {
background-color: #e3f2fd;
border-left: 4px solid #2196f3;
padding: 1rem;
margin: 1rem 0;
border-radius: 0 0.5rem 0.5rem 0;
}
.warning {
background-color: #fff8e1;
border-left: 4px solid #ffc107;
padding: 1rem;
margin: 1rem 0;
border-radius: 0 0.5rem 0.5rem 0;
}
.success {
background-color: #e8f5e9;
border-left: 4px solid #4caf50;
padding: 1rem;
margin: 1rem 0;
border-radius: 0 0.5rem 0.5rem 0;
}
.hardware-req {
background-color: #f5f5f5;
border-radius: 0.5rem;
padding: 1rem;
margin: 1rem 0;
}
.tab-content {
display: none;
}
.tab-content.active {
display: block;
}
.tab-button {
background-color: #f1f1f1;
border: none;
padding: 10px 16px;
cursor: pointer;
transition: 0.3s;
border-radius: 5px 5px 0 0;
margin-right: 5px;
}
.tab-button:hover {
background-color: #ddd;
}
.tab-button.active {
background-color: #4CAF50;
color: white;
}
</style>
</head>
<body class="bg-gray-50 text-gray-800">
<div class="container mx-auto px-4 py-8 max-w-5xl">
<header class="mb-8 text-center">
<h1 class="text-4xl font-bold text-green-700 mb-2">DeepSeek V3 0324 部署指南</h1>
<p class="text-xl text-gray-600">NVIDIA A6000 + Dell T7910 内网工作站</p>
<div class="flex justify-center mt-4">
<span class="bg-green-100 text-green-800 text-sm font-medium px-2.5 py-0.5 rounded mr-2">Ktransformers</span>
<span class="bg-blue-100 text-blue-800 text-sm font-medium px-2.5 py-0.5 rounded mr-2">Unsloth</span>
<span class="bg-purple-100 text-purple-800 text-sm font-medium px-2.5 py-0.5 rounded">GGUF量化模型</span>
</div>
</header>
<div class="bg-white rounded-lg shadow-md p-6 mb-8">
<h2 class="text-2xl font-semibold mb-4 text-gray-800 border-b pb-2">
<i class="fas fa-info-circle text-blue-500 mr-2"></i>部署方案概述
</h2>
<p class="mb-4">本指南详细介绍了在NVIDIA A6000显卡的Dell T7910内网工作站上部署DeepSeek V3 0324大语言模型的完整流程,采用Ktransformers+Unsloth联合部署方案。</p>
<div class="grid grid-cols-1 md:grid-cols-2 gap-4 mb-6">
<div class="bg-gray-50 p-4 rounded-lg">
<h3 class="font-medium text-lg mb-2 text-green-700"><i class="fas fa-laptop-code mr-2"></i>外网准备阶段</h3>
<ul class="list-disc pl-5 space-y-1">
<li>在可访问外网的Windows电脑上使用WSL</li>
<li>完成所有依赖项的安装</li>
<li>下载模型文件和配置</li>
</ul>
</div>
<div class="bg-gray-50 p-4 rounded-lg">
<h3 class="font-medium text-lg mb-2 text-blue-700"><i class="fas fa-server mr-2"></i>内网部署阶段</h3>
<ul class="list-disc pl-5 space-y-1">
<li>将完整环境复制到固态硬盘</li>
<li>插入内网工作站启动</li>
<li>验证模型运行</li>
</ul>
</div>
</div>
<div class="note">
<i class="fas fa-lightbulb text-yellow-500 mr-2"></i>
<strong>提示:</strong> 本方案特别适合中国网络环境,尽可能使用国内下载源加速部署过程。
</div>
</div>
<div class="bg-white rounded-lg shadow-md p-6 mb-8">
<h2 class="text-2xl font-semibold mb-4 text-gray-800 border-b pb-2">
<i class="fas fa-download text-purple-500 mr-2"></i>准备工作
</h2>
<h3 class="text-xl font-medium mt-6 mb-3 text-gray-700">1. 系统要求</h3>
<div class="hardware-req">
<div class="grid grid-cols-1 md:grid-cols-2 gap-4">
<div>
<h4 class="font-medium mb-2"><i class="fas fa-desktop mr-2"></i>硬件配置</h4>
<ul class="list-disc pl-5 space-y-1">
<li>NVIDIA A6000显卡 (48GB显存)</li>
<li>Dell Precision T7910工作站</li>
<li>至少64GB系统内存</li>
<li>高速固态硬盘(建议NVMe)</li>
</ul>
</div>
<div>
<h4 class="font-medium mb-2"><i class="fas fa-cog mr-2"></i>软件环境</h4>
<ul class="list-disc pl-5 space-y-1">
<li>Windows 10/11 with WSL2</li>
<li>Ubuntu 20.04/22.04 LTS (WSL)</li>
<li>Python 3.10+</li>
<li>CUDA 11.8/12.1</li>
</ul>
</div>
</div>
</div>
<h3 class="text-xl font-medium mt-6 mb-3 text-gray-700">2. 模型选择</h3>
<p class="mb-4">我们将使用ModelScope上的Unsloth提供的DeepSeek-V3-0324 GGUF量化模型,以下是可选模型及其硬件需求:</p>
<div class="overflow-x-auto">
<table class="min-w-full bg-white border border-gray-200">
<thead class="bg-gray-100">
<tr>
<th class="py-2 px-4 border-b">模型名称</th>
<th class="py-2 px-4 border-b">量化级别</th>
<th class="py-2 px-4 border-b">显存需求</th>
<th class="py-2 px-4 border-b">内存需求</th>
<th class="py-2 px-4 border-b">适用场景</th>
</tr>
</thead>
<tbody>
<tr>
<td class="py-2 px-4 border-b">deepseek-v3-0324-Q2_K.gguf</td>
<td class="py-2 px-4 border-b">Q2_K (极低精度)</td>
<td class="py-2 px-4 border-b">~12GB</td>
<td class="py-2 px-4 border-b">32GB+</td>
<td class="py-2 px-4 border-b">快速推理,低资源</td>
</tr>
<tr class="bg-gray-50">
<td class="py-2 px-4 border-b">deepseek-v3-0324-Q4_K_M.gguf</td>
<td class="py-2 px-4 border-b">Q4_K_M (中等精度)</td>
<td class="py-2 px-4 border-b">~18GB</td>
<td class="py-2 px-4 border-b">48GB+</td>
<td class="py-2 px-4 border-b">平衡精度与速度</td>
</tr>
<tr>
<td class="py-2 px-4 border-b">deepseek-v3-0324-Q5_K_M.gguf</td>
<td class="py-2 px-4 border-b">Q5_K_M (较高精度)</td>
<td class="py-2 px-4 border-b">~22GB</td>
<td class="py-2 px-4 border-b">64GB+</td>
<td class="py-2 px-4 border-b">高质量推理</td>
</tr>
<tr class="bg-gray-50">
<td class="py-2 px-4 border-b">deepseek-v3-0324-Q6_K.gguf</td>
<td class="py-2 px-4 border-b">Q6_K (高精度)</td>
<td class="py-2 px-4 border-b">~26GB</td>
<td class="py-2 px-4 border-b">64GB+</td>
<td class="py-2 px-4 border-b">最高质量推理</td>
</tr>
</tbody>
</table>
</div>
<div class="note mt-4">
<i class="fas fa-lightbulb text-yellow-500 mr-2"></i>
<strong>建议:</strong> 对于NVIDIA A6000显卡(48GB显存),推荐使用Q5_K_M或Q6_K量化级别的模型,以获得最佳性能与质量的平衡。
</div>
</div>
<div class="bg-white rounded-lg shadow-md p-6 mb-8">
<h2 class="text-2xl font-semibold mb-4 text-gray-800 border-b pb-2">
<i class="fas fa-terminal text-green-500 mr-2"></i>外网环境部署 (WSL)
</h2>
<h3 class="text-xl font-medium mt-6 mb-3 text-gray-700">1. 设置WSL环境</h3>
<p class="mb-4">在Windows电脑上启用WSL并安装Ubuntu:</p>
<div class="code-block">
<button class="copy-btn" onclick="copyCode(this)">复制</button>
<code># 以管理员身份打开PowerShell
wsl --install -d Ubuntu-22.04
wsl --set-version Ubuntu-22.04 2
wsl -d Ubuntu-22.04</code>
</div>
<h3 class="text-xl font-medium mt-6 mb-3 text-gray-700">2. 配置Ubuntu环境</h3>
<p class="mb-4">在WSL的Ubuntu中执行以下命令:</p>
<div class="code-block">
<button class="copy-btn" onclick="copyCode(this)">复制</button>
<code># 更新系统并安装基础工具
sudo apt update && sudo apt upgrade -y
sudo apt install -y build-essential cmake git wget python3-pip python3-venv
# 配置国内源 (阿里云)
sudo sed -i 's|http://archive.ubuntu.com|https://mirrors.aliyun.com|g' /etc/apt/sources.list
sudo sed -i 's|http://security.ubuntu.com|https://mirrors.aliyun.com|g' /etc/apt/sources.list
# 安装CUDA工具包 (使用国内源)
wget https://developer.download.nvidia.cn/compute/cuda/repos/wsl-ubuntu/x86_64/cuda-wsl-ubuntu.pin
sudo mv cuda-wsl-ubuntu.pin /etc/apt/preferences.d/cuda-repository-pin-600
wget https://developer.download.nvidia.cn/compute/cuda/12.1.1/local_installers/cuda-repo-wsl-ubuntu-12-1-local_12.1.1-1_amd64.deb
sudo dpkg -i cuda-repo-wsl-ubuntu-12-1-local_12.1.1-1_amd64.deb
sudo cp /var/cuda-repo-wsl-ubuntu-12-1-local/cuda-*-keyring.gpg /usr/share/keyrings/
sudo apt-get update
sudo apt-get -y install cuda
# 验证CUDA安装
nvidia-smi
nvcc --version</code>
</div>
<div class="note mt-4">
<i class="fas fa-lightbulb text-yellow-500 mr-2"></i>
<strong>注意:</strong> 如果遇到网络问题,可以尝试使用清华源或中科大源替换阿里云源。
</div>
<h3 class="text-xl font-medium mt-6 mb-3 text-gray-700">3. 创建Python虚拟环境</h3>
<div class="code-block">
<button class="copy-btn" onclick="copyCode(this)">复制</button>
<code># 创建虚拟环境
python3 -m venv deepseek-env
source deepseek-env/bin/activate
# 配置pip国内源
pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple
pip install --upgrade pip
# 安装基础依赖
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121
pip install transformers accelerate sentencepiece ninja</code>
</div>
<h3 class="text-xl font-medium mt-6 mb-3 text-gray-700">4. 安装Ktransformers和Unsloth</h3>
<div class="code-block">
<button class="copy-btn" onclick="copyCode(this)">复制</button>
<code># 安装Ktransformers
pip install ktransformers
# 安装Unsloth (使用国内Git镜像)
git clone https://gitee.com/mirrors/unsloth.git
cd unsloth
pip install -e .
# 或者直接从PyPI安装 (可能较慢)
# pip install unsloth</code>
</div>
<div class="warning mt-4">
<i class="fas fa-exclamation-triangle text-orange-500 mr-2"></i>
<strong>重要:</strong> 如果直接从PyPI安装速度过慢,建议使用Git镜像源克隆仓库后本地安装。
</div>
<h3 class="text-xl font-medium mt-6 mb-3 text-gray-700">5. 下载DeepSeek V3 0324模型</h3>
<p class="mb-4">从ModelScope下载GGUF量化模型:</p>
<div class="code-block">
<button class="copy-btn" onclick="copyCode(this)">复制</button>
<code># 创建模型目录
mkdir -p ~/models/deepseek-v3-0324
cd ~/models/deepseek-v3-0324
# 使用国内镜像下载模型 (以Q5_K_M为例)
wget https://modelscope.cn/api/v1/models/unsloth/DeepSeek-V3-0324-GGUF/repo?Revision=master&FilePath=deepseek-v3-0324-Q5_K_M.gguf -O deepseek-v3-0324-Q5_K_M.gguf
# 可选: 下载其他量化级别的模型
wget https://modelscope.cn/api/v1/models/unsloth/DeepSeek-V3-0324-GGUF/repo?Revision=master&FilePath=deepseek-v3-0324-Q4_K_M.gguf -O deepseek-v3-0324-Q4_K_M.gguf
wget https://modelscope.cn/api/v1/models/unsloth/DeepSeek-V3-0324-GGUF/repo?Revision=master&FilePath=deepseek-v3-0324-Q6_K.gguf -O deepseek-v3-0324-Q6_K.gguf</code>
</div>
<div class="note mt-4">
<i class="fas fa-lightbulb text-yellow-500 mr-2"></i>
<strong>提示:</strong> 模型文件较大(10GB+),请确保有足够的磁盘空间。下载完成后可以验证文件的MD5/SHA256校验和。
</div>
</div>
<div class="bg-white rounded-lg shadow-md p-6 mb-8">
<h2 class="text-2xl font-semibold mb-4 text-gray-800 border-b pb-2">
<i class="fas fa-cogs text-blue-500 mr-2"></i>模型配置与测试
</h2>
<h3 class="text-xl font-medium mt-6 mb-3 text-gray-700">1. 创建测试脚本</h3>
<p class="mb-4">创建一个Python脚本测试模型是否能正常运行:</p>
<div class="code-block">
<button class="copy-btn" onclick="copyCode(this)">复制</button>
<code># 创建测试脚本
cat &lt;&lt; 'EOF' &gt; test_deepseek.py
from unsloth import FastLanguageModel
import torch
model_path = "/home/yourusername/models/deepseek-v3-0324/deepseek-v3-0324-Q5_K_M.gguf"
model, tokenizer = FastLanguageModel.from_pretrained(model_path)
# 配置模型参数
FastLanguageModel.for_inference(model)
model.config.use_cache = True
model.config.max_seq_length = 4096 # 根据显存调整
# 测试推理
inputs = tokenizer("你好,DeepSeek V3!", return_tensors="pt").to("cuda")
outputs = model.generate(**inputs, max_new_tokens=64)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
EOF
# 运行测试脚本
python test_deepseek.py</code>
</div>
<h3 class="text-xl font-medium mt-6 mb-3 text-gray-700">2. 优化配置参数</h3>
<p class="mb-4">根据NVIDIA A6000显卡的48GB显存,以下是推荐的配置参数:</p>
<div class="tabs mb-4">
<button class="tab-button active" onclick="openTab(event, 'q5-tab')">Q5_K_M 配置</button>
<button class="tab-button" onclick="openTab(event, 'q6-tab')">Q6_K 配置</button>
<button class="tab-button" onclick="openTab(event, 'q4-tab')">Q4_K_M 配置</button>
</div>
<div id="q5-tab" class="tab-content active">
<div class="code-block">
<button class="copy-btn" onclick="copyCode(this)">复制</button>
<code># Q5_K_M 量化模型配置 (推荐)
model_config = {
"model_path": "/path/to/deepseek-v3-0324-Q5_K_M.gguf",
"n_gpu_layers": 40, # 使用尽可能多的GPU层
"n_ctx": 4096, # 上下文长度
"n_batch": 512, # 批处理大小
"n_threads": 12, # CPU线程数(根据CPU核心数调整)
"max_new_tokens": 1024,
"temperature": 0.7,
"top_p": 0.9,
"repetition_penalty": 1.1,
}</code>
</div>
</div>
<div id="q6-tab" class="tab-content">
<div class="code-block">
<button class="copy-btn" onclick="copyCode(this)">复制</button>
<code># Q6_K 量化模型配置 (高质量)
model_config = {
"model_path": "/path/to/deepseek-v3-0324-Q6_K.gguf",
"n_gpu_layers": 35, # 减少GPU层数以适应更大模型
"n_ctx": 4096,
"n_batch": 384, # 减小批处理大小
"n_threads": 12,
"max_new_tokens": 768,
"temperature": 0.7,
"top_p": 0.9,
"repetition_penalty": 1.1,
}</code>
</div>
</div>
<div id="q4-tab" class="tab-content">
<div class="code-block">
<button class="copy-btn" onclick="copyCode(this)">复制</button>
<code># Q4_K_M 量化模型配置 (高性能)
model_config = {
"model_path": "/path/to/deepseek-v3-0324-Q4_K_M.gguf",
"n_gpu_layers": 45, # 可以使用更多GPU层
"n_ctx": 4096,
"n_batch": 768, # 增大批处理大小
"n_threads": 12,
"max_new_tokens": 2048,
"temperature": 0.7,
"top_p": 0.9,
"repetition_penalty": 1.1,
}</code>
</div>
</div>
<div class="success mt-4">
<i class="fas fa-check-circle text-green-500 mr-2"></i>
<strong>验证:</strong> 如果测试脚本能正常运行并生成文本输出,说明模型已正确加载并可以使用。
</div>
</div>
<div class="bg-white rounded-lg shadow-md p-6 mb-8">
<h2 class="text-2xl font-semibold mb-4 text-gray-800 border-b pb-2">
<i class="fas fa-exchange-alt text-purple-500 mr-2"></i>迁移到内网工作站
</h2>
<h3 class="text-xl font-medium mt-6 mb-3 text-gray-700">1. 准备迁移内容</h3>
<p class="mb-4">将以下内容复制到固态硬盘:</p>
<ul class="list-disc pl-5 space-y-1 mb-4">
<li>完整的WSL Ubuntu系统 (导出为tar文件)</li>
<li>模型文件 (~/models/deepseek-v3-0324/)</li>
<li>Python虚拟环境 (~/deepseek-env/)</li>
<li>测试脚本和配置文件</li>
</ul>
<div class="code-block">
<button class="copy-btn" onclick="copyCode(this)">复制</button>
<code># 在WSL中导出Ubuntu系统
wsl --export Ubuntu-22.04 ubuntu-22.04-deepseek.tar
# 复制模型文件和虚拟环境
cp -r ~/models /mnt/e/deepseek-deploy/
cp -r ~/deepseek-env /mnt/e/deepseek-deploy/
cp test_deepseek.py /mnt/e/deepseek-deploy/</code>
</div>
<h3 class="text-xl font-medium mt-6 mb-3 text-gray-700">2. 在内网工作站上设置</h3>
<p class="mb-4">将固态硬盘插入内网工作站后执行以下步骤:</p>
<div class="code-block">
<button class="copy-btn" onclick="copyCode(this)">复制</button>
<code># 1. 安装WSL (如果尚未安装)
wsl --install
# 2. 导入Ubuntu系统
wsl --import Ubuntu-22.04-deepseek C:\WSL\Ubuntu-22.04-deepseek E:\ubuntu-22.04-deepseek.tar
# 3. 设置默认用户 (替换yourusername)
ubuntu2204.exe config --default-user yourusername
# 4. 启动WSL
wsl -d Ubuntu-22.04-deepseek</code>
</div>
<h3 class="text-xl font-medium mt-6 mb-3 text-gray-700">3. 验证内网环境</h3>
<p class="mb-4">在内网工作站的WSL中验证环境:</p>
<div class="code-block">
<button class="copy-btn" onclick="copyCode(this)">复制</button>
<code># 激活虚拟环境
source /mnt/e/deepseek-deploy/deepseek-env/bin/activate
# 验证CUDA
nvidia-smi
nvcc --version
# 运行测试脚本
python /mnt/e/deepseek-deploy/test_deepseek.py</code>
</div>
<div class="warning mt-4">
<i class="fas fa-exclamation-triangle text-orange-500 mr-2"></i>
<strong>注意:</strong> 确保内网工作站已安装相同或兼容版本的NVIDIA驱动和CUDA工具包。
</div>
</div>
<div class="bg-white rounded-lg shadow-md p-6 mb-8">
<h2 class="text-2xl font-semibold mb-4 text-gray-800 border-b pb-2">
<i class="fas fa-rocket text-red-500 mr-2"></i>高级配置与优化
</h2>
<h3 class="text-xl font-medium mt-6 mb-3 text-gray-700">1. 使用Ktransformers加速</h3>
<p class="mb-4">结合Ktransformers可以进一步提高推理速度:</p>
<div class="code-block">
<button class="copy-btn" onclick="copyCode(this)">复制</button>
<code>from ktransformers import AutoModelForCausalLM
from unsloth import FastLanguageModel
# 加载模型
model_path = "/path/to/deepseek-v3-0324-Q5_K_M.gguf"
model, tokenizer = FastLanguageModel.from_pretrained(model_path)
# 转换为Ktransformers格式
kmodel = AutoModelForCausalLM.from_pretrained(model, device_map="auto")
# 配置生成参数
generation_config = {
"max_new_tokens": 1024,
"do_sample": True,
"temperature": 0.7,
"top_p": 0.9,
}
# 推理示例
inputs = tokenizer("中国的首都是", return_tensors="pt").to("cuda")
outputs = kmodel.generate(**inputs, **generation_config)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))</code>
</div>
<h3 class="text-xl font-medium mt-6 mb-3 text-gray-700">2. 批处理推理优化</h3>
<p class="mb-4">利用A6000的大显存进行批处理推理:</p>
<div class="code-block">
<button class="copy-btn" onclick="copyCode(this)">复制</button>
<code>def batch_inference(queries, model, tokenizer, batch_size=4):
# 编码所有查询
inputs = tokenizer(queries, return_tensors="pt", padding=True, truncation=True).to("cuda")
# 分批处理
outputs = []
for i in range(0, len(queries), batch_size):
batch = {k: v[i:i+batch_size] for k, v in inputs.items()}
batch_outputs = model.generate(**batch, max_new_tokens=256)
outputs.extend(tokenizer.batch_decode(batch_outputs, skip_special_tokens=True))
return outputs
# 示例使用
queries = [
"解释人工智能的基本概念",
"写一首关于春天的诗",
"Python中如何实现快速排序?",
"中国的四大发明是什么?"
]
results = batch_inference(queries, kmodel, tokenizer)
for q, r in zip(queries, results):
print(f"Q: {q}\nA: {r}\n{'='*50}")</code>
</div>
<h3 class="text-xl font-medium mt-6 mb-3 text-gray-700">3. 性能监控脚本</h3>
<p class="mb-4">监控GPU使用情况和推理速度:</p>
<div class="code-block">
<button class="copy-btn" onclick="copyCode(this)">复制</button>
<code>import torch
from pynvml import *
def print_gpu_utilization():
nvmlInit()
handle = nvmlDeviceGetHandleByIndex(0)
info = nvmlDeviceGetMemoryInfo(handle)
print(f"GPU内存使用: {info.used//1024**2}MB / {info.total//1024**2}MB")
print(f"GPU利用率: {nvmlDeviceGetUtilizationRates(handle).gpu}%")
# 在推理前后调用
print_gpu_utilization()
inputs = tokenizer("监控GPU使用情况", return_tensors="pt").to("cuda")
outputs = model.generate(**inputs, max_new_tokens=100)
print_gpu_utilization()</code>
</div>
</div>
<div class="bg-white rounded-lg shadow-md p-6 mb-8">
<h2 class="text-2xl font-semibold mb-4 text-gray-800 border-b pb-2">
<i class="fas fa-question-circle text-indigo-500 mr-2"></i>常见问题解决
</h2>
<div class="space-y-4">
<div class="border-l-4 border-blue-500 pl-4 py-2">
<h3 class="font-medium">1. CUDA out of memory 错误</h3>
<p class="text-sm text-gray-600">解决方案:减少<code>n_gpu_layers</code>、降低<code>n_ctx</code><code>n_batch</code>,或使用更低量化的模型。</p>
</div>
<div class="border-l-4 border-blue-500 pl-4 py-2">
<h3 class="font-medium">2. 模型加载缓慢</h3>
<p class="text-sm text-gray-600">解决方案:确保模型文件在SSD上,增加<code>n_threads</code>参数使用更多CPU核心。</p>
</div>
<div class="border-l-4 border-blue-500 pl-4 py-2">
<h3 class="font-medium">3. 推理速度不理想</h3>
<p class="text-sm text-gray-600">解决方案:尝试使用Ktransformers,启用<code>use_cache</code>,并确保足够多的层在GPU上运行。</p>
</div>
<div class="border-l-4 border-blue-500 pl-4 py-2">
<h3 class="font-medium">4. 迁移后模型无法运行</h3>
<p class="text-sm text-gray-600">解决方案:检查CUDA版本兼容性,确保内网工作站安装了正确的NVIDIA驱动。</p>
</div>
<div class="border-l-4 border-blue-500 pl-4 py-2">
<h3 class="font-medium">5. 中文输出质量不佳</h3>
<p class="text-sm text-gray-600">解决方案:调整<code>temperature</code><code>top_p</code>参数,或使用更高量化的模型。</p>
</div>
</div>
</div>
<div class="bg-green-50 rounded-lg shadow-md p-6 mb-8 border border-green-200">
<h2 class="text-2xl font-semibold mb-4 text-green-800 border-b pb-2">
<i class="fas fa-check-circle text-green-500 mr-2"></i>部署完成
</h2>
<p class="mb-4">恭喜!您已成功在NVIDIA A6000显卡的Dell T7910内网工作站上部署了DeepSeek V3 0324模型。</p>
<div class="grid grid-cols-1 md:grid-cols-2 gap-4">
<div class="bg-white p-4 rounded-lg border border-green-100">
<h3 class="font-medium text-lg mb-2 text-green-700"><i class="fas fa-lightbulb mr-2"></i>下一步建议</h3>
<ul class="list-disc pl-5 space-y-1">
<li>创建API服务供其他应用调用</li>
<li>开发自定义前端界面</li>
<li>针对特定任务进行微调</li>
</ul>
</div>
<div class="bg-white p-4 rounded-lg border border-green-100">
<h3 class="font-medium text-lg mb-2 text-green-700"><i class="fas fa-book mr-2"></i>学习资源</h3>
<ul class="list-disc pl-5 space-y-1">
<li>DeepSeek官方文档</li>
<li>Unsloth GitHub仓库</li>
<li>Ktransformers使用指南</li>
</ul>
</div>
</div>
</div>
<footer class="text-center text-sm text-gray-500 mt-8">
<p>© 2023 DeepSeek V3 0324 部署指南 | 使用Ktransformers+Unsloth联合部署方案</p>
<p class="mt-2">最后更新: 2023年11月</p>
</footer>
</div>
<script>
// 复制代码功能
function copyCode(button) {
const codeBlock = button.parentElement;
const code = codeBlock.querySelector('code').textContent;
navigator.clipboard.writeText(code).then(() => {
button.textContent = '已复制!';
setTimeout(() => {
button.textContent = '复制';
}, 2000);
});
}
// 标签页功能
function openTab(evt, tabName) {
const tabContents = document.getElementsByClassName("tab-content");
for (let i = 0; i < tabContents.length; i++) {
tabContents[i].classList.remove("active");
}
const tabButtons = document.getElementsByClassName("tab-button");
for (let i = 0; i < tabButtons.length; i++) {
tabButtons[i].classList.remove("active");
}
document.getElementById(tabName).classList.add("active");
evt.currentTarget.classList.add("active");
}
</script>
<p style="border-radius: 8px; text-align: center; font-size: 12px; color: #fff; margin-top: 16px;position: fixed; left: 8px; bottom: 8px; z-index: 10; background: rgba(0, 0, 0, 0.8); padding: 4px 8px;">Made with <img src="https://enzostvs-deepsite.hf.space/logo.svg" alt="DeepSite Logo" style="width: 16px; height: 16px; vertical-align: middle;display:inline-block;margin-right:3px;filter:brightness(0) invert(1);"><a href="https://enzostvs-deepsite.hf.space" style="color: #fff;text-decoration: underline;" target="_blank" >DeepSite</a> - <a href="https://enzostvs-deepsite.hf.space?remix=lzyhn/deepseek" style="color: #fff;text-decoration: underline;" target="_blank" >🧬 Remix</a></p></body>
</html>