Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
+
|
4 |
+
# 加载模型
|
5 |
+
print("正在加载病理检测NER模型...")
|
6 |
+
ner = pipeline(
|
7 |
+
"token-classification",
|
8 |
+
model="OpenMed/OpenMed-NER-PathologyDetect-BigMed-560M",
|
9 |
+
aggregation_strategy="max"
|
10 |
+
)
|
11 |
+
print("模型加载完成!")
|
12 |
+
|
13 |
+
# 处理函数
|
14 |
+
def process_text(text):
|
15 |
+
if not text:
|
16 |
+
return "请输入医学文本"
|
17 |
+
|
18 |
+
results = ner(text)
|
19 |
+
output = ""
|
20 |
+
|
21 |
+
for result in results:
|
22 |
+
entity = result["entity_group"]
|
23 |
+
word = result["word"]
|
24 |
+
score = round(result["score"], 2)
|
25 |
+
output += f"检测到病理实体: {word} (类型: {entity}, 置信度: {score})\n"
|
26 |
+
|
27 |
+
if not output:
|
28 |
+
output = "未检测到任何病理相关实体"
|
29 |
+
|
30 |
+
return output
|
31 |
+
|
32 |
+
# 创建界面
|
33 |
+
demo = gr.Interface(
|
34 |
+
fn=process_text,
|
35 |
+
inputs=gr.Textbox(placeholder="请输入医学文本...", lines=5),
|
36 |
+
outputs="text",
|
37 |
+
title="OpenMed 病理检测 NER 模型演示",
|
38 |
+
description="使用OpenMed-NER-PathologyDetect-BigMed-560M模型识别文本中的病理实体"
|
39 |
+
)
|
40 |
+
|
41 |
+
# 启动服务
|
42 |
+
demo.launch()
|