Update part1_data.py
Browse files- part1_data.py +156 -238
part1_data.py
CHANGED
|
@@ -8,8 +8,6 @@ import requests
|
|
| 8 |
from geopy.geocoders import Nominatim
|
| 9 |
from geopy.exc import GeocoderTimedOut
|
| 10 |
from scipy import stats
|
| 11 |
-
import ee
|
| 12 |
-
import geemap
|
| 13 |
|
| 14 |
# Get API key from environment variable
|
| 15 |
OPENWEATHER_API_KEY = os.getenv('OPENWEATHER_API_KEY', 'default_key')
|
|
@@ -21,7 +19,7 @@ class TobaccoAnalyzer:
|
|
| 21 |
'temperature': {'min': 20, 'max': 30},
|
| 22 |
'humidity': {'min': 60, 'max': 80},
|
| 23 |
'rainfall': {'min': 500/365, 'max': 1200/365},
|
| 24 |
-
'ndvi': {'min': 0.3, 'max': 0.8} #
|
| 25 |
}
|
| 26 |
self.geolocator = Nominatim(user_agent="tobacco_analyzer")
|
| 27 |
self.seasons = {
|
|
@@ -30,13 +28,13 @@ class TobaccoAnalyzer:
|
|
| 30 |
7: 'Summer', 8: 'Summer', 9: 'Fall',
|
| 31 |
10: 'Fall', 11: 'Fall', 12: 'Winter'
|
| 32 |
}
|
| 33 |
-
#
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
|
| 41 |
def geocode_location(self, location_name):
|
| 42 |
"""Convert location name to coordinates"""
|
|
@@ -46,12 +44,23 @@ class TobaccoAnalyzer:
|
|
| 46 |
return {
|
| 47 |
'lat': location.latitude,
|
| 48 |
'lon': location.longitude,
|
| 49 |
-
'address': location.address
|
|
|
|
| 50 |
}
|
| 51 |
return None
|
| 52 |
except GeocoderTimedOut:
|
| 53 |
return None
|
| 54 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
def get_weather_data(self, lat, lon, historical_days=90, forecast_days=90):
|
| 56 |
"""Get historical and forecast weather data"""
|
| 57 |
historical_data = []
|
|
@@ -70,265 +79,174 @@ class TobaccoAnalyzer:
|
|
| 70 |
'humidity': data['main']['humidity'],
|
| 71 |
'rainfall': data.get('rain', {}).get('1h', 0) * 24,
|
| 72 |
'type': 'historical',
|
| 73 |
-
'description': data['weather'][0]['description']
|
|
|
|
| 74 |
}
|
| 75 |
historical_data.append(weather_data)
|
| 76 |
except Exception as e:
|
| 77 |
print(f"Error fetching historical data: {e}")
|
| 78 |
|
| 79 |
# Get forecast data
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
forecast_data = []
|
| 81 |
try:
|
|
|
|
| 82 |
forecast_url = f"https://api.openweathermap.org/data/2.5/forecast?lat={lat}&lon={lon}&appid={self.api_key}&units=metric"
|
| 83 |
response = requests.get(forecast_url)
|
| 84 |
if response.status_code == 200:
|
| 85 |
data = response.json()
|
| 86 |
for item in data['list']:
|
|
|
|
| 87 |
forecast = {
|
| 88 |
-
'date':
|
| 89 |
'temperature': item['main']['temp'],
|
| 90 |
'humidity': item['main']['humidity'],
|
| 91 |
'rainfall': item.get('rain', {}).get('3h', 0) * 8,
|
| 92 |
'type': 'forecast_5day',
|
| 93 |
-
'description': item['weather'][0]['description']
|
|
|
|
| 94 |
}
|
| 95 |
forecast_data.append(forecast)
|
| 96 |
|
| 97 |
-
# Generate extended forecast
|
| 98 |
last_date = max(d['date'] for d in forecast_data)
|
| 99 |
-
|
|
|
|
|
|
|
| 100 |
|
| 101 |
-
for day in range(1, forecast_days - 5):
|
| 102 |
-
date = last_date + timedelta(days=day)
|
| 103 |
-
|
| 104 |
-
if not historical_df.empty:
|
| 105 |
-
temp_trend = stats.linregress(range(len(historical_df)), historical_df['temperature'])[0]
|
| 106 |
-
humidity_trend = stats.linregress(range(len(historical_df)), historical_df['humidity'])[0]
|
| 107 |
-
rainfall_trend = stats.linregress(range(len(historical_df)), historical_df['rainfall'])[0]
|
| 108 |
-
else:
|
| 109 |
-
temp_trend = humidity_trend = rainfall_trend = 0
|
| 110 |
-
|
| 111 |
-
recent_temps = [d['temperature'] for d in forecast_data[-5:]]
|
| 112 |
-
recent_humidity = [d['humidity'] for d in forecast_data[-5:]]
|
| 113 |
-
recent_rainfall = [d['rainfall'] for d in forecast_data[-5:]]
|
| 114 |
-
|
| 115 |
-
extended_forecast = {
|
| 116 |
-
'date': date,
|
| 117 |
-
'temperature': np.mean(recent_temps) + temp_trend * day,
|
| 118 |
-
'humidity': np.mean(recent_humidity) + humidity_trend * day,
|
| 119 |
-
'rainfall': np.mean(recent_rainfall) + rainfall_trend * day,
|
| 120 |
-
'type': 'forecast_extended',
|
| 121 |
-
'description': 'Extended Forecast'
|
| 122 |
-
}
|
| 123 |
-
forecast_data.append(extended_forecast)
|
| 124 |
-
|
| 125 |
except Exception as e:
|
| 126 |
print(f"Error fetching forecast data: {e}")
|
| 127 |
-
|
| 128 |
-
# Combine and process all data
|
| 129 |
-
all_data = pd.DataFrame(historical_data + forecast_data)
|
| 130 |
-
all_data = all_data.sort_values('date')
|
| 131 |
-
|
| 132 |
-
# Add analysis columns
|
| 133 |
-
all_data['month'] = all_data['date'].dt.month
|
| 134 |
-
all_data['season'] = all_data['month'].map(self.seasons)
|
| 135 |
|
| 136 |
-
|
| 137 |
-
all_data['temp_7day_avg'] = all_data['temperature'].rolling(window=7, min_periods=1).mean()
|
| 138 |
-
all_data['humidity_7day_avg'] = all_data['humidity'].rolling(window=7, min_periods=1).mean()
|
| 139 |
-
all_data['rainfall_7day_avg'] = all_data['rainfall'].rolling(window=7, min_periods=1).mean()
|
| 140 |
-
|
| 141 |
-
return all_data
|
| 142 |
-
|
| 143 |
-
def get_ndvi_data(self, lat, lon, radius=2000):
|
| 144 |
-
"""Get NDVI data for location"""
|
| 145 |
-
try:
|
| 146 |
-
point = ee.Geometry.Point([lon, lat])
|
| 147 |
-
area = point.buffer(radius)
|
| 148 |
-
|
| 149 |
-
end_date = datetime.now()
|
| 150 |
-
start_date = end_date - timedelta(days=90)
|
| 151 |
-
|
| 152 |
-
s2 = ee.ImageCollection('COPERNICUS/S2_SR') \
|
| 153 |
-
.filterDate(start_date.strftime('%Y-%m-%d'), end_date.strftime('%Y-%m-%d')) \
|
| 154 |
-
.filterBounds(area) \
|
| 155 |
-
.filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE', 20))
|
| 156 |
-
|
| 157 |
-
def addNDVI(image):
|
| 158 |
-
ndvi = image.normalizedDifference(['B8', 'B4']).rename('NDVI')
|
| 159 |
-
return image.addBands(ndvi)
|
| 160 |
-
|
| 161 |
-
s2_ndvi = s2.map(addNDVI)
|
| 162 |
-
ndvi_image = s2_ndvi.select('NDVI').mean()
|
| 163 |
-
|
| 164 |
-
stats = ndvi_image.reduceRegion(
|
| 165 |
-
reducer=ee.Reducer.mean().combine(
|
| 166 |
-
reducer2=ee.Reducer.stdDev(),
|
| 167 |
-
sharedInputs=True
|
| 168 |
-
).combine(
|
| 169 |
-
reducer2=ee.Reducer.minMax(),
|
| 170 |
-
sharedInputs=True
|
| 171 |
-
),
|
| 172 |
-
geometry=area,
|
| 173 |
-
scale=10,
|
| 174 |
-
maxPixels=1e9
|
| 175 |
-
).getInfo()
|
| 176 |
-
|
| 177 |
-
return {
|
| 178 |
-
'image': ndvi_image,
|
| 179 |
-
'stats': stats,
|
| 180 |
-
'area': area
|
| 181 |
-
}
|
| 182 |
-
|
| 183 |
-
except Exception as e:
|
| 184 |
-
print(f"Error fetching NDVI data: {e}")
|
| 185 |
-
return None
|
| 186 |
-
|
| 187 |
-
def analyze_location(self, location_name, historical_days=90, forecast_days=90):
|
| 188 |
-
"""Comprehensive location analysis including weather and NDVI"""
|
| 189 |
-
try:
|
| 190 |
-
location_info = self.geocode_location(location_name)
|
| 191 |
-
if not location_info:
|
| 192 |
-
raise ValueError(f"Could not find coordinates for location: {location_name}")
|
| 193 |
-
|
| 194 |
-
lat = location_info['lat']
|
| 195 |
-
lon = location_info['lon']
|
| 196 |
-
|
| 197 |
-
weather_data = self.get_weather_data(lat, lon, historical_days, forecast_days)
|
| 198 |
-
weather_analysis = self.analyze_trends(weather_data)
|
| 199 |
-
weather_score = self.calculate_weather_score(weather_analysis)
|
| 200 |
-
|
| 201 |
-
ndvi_data = None
|
| 202 |
-
ndvi_score = None
|
| 203 |
-
if self.ee_initialized:
|
| 204 |
-
try:
|
| 205 |
-
ndvi_data = self.get_ndvi_data(lat, lon)
|
| 206 |
-
ndvi_score = self.calculate_ndvi_score(ndvi_data)
|
| 207 |
-
except Exception as e:
|
| 208 |
-
print(f"Error getting NDVI data: {e}")
|
| 209 |
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
'weather_score': weather_score,
|
| 215 |
-
'ndvi_data': ndvi_data,
|
| 216 |
-
'ndvi_score': ndvi_score,
|
| 217 |
-
'combined_score': self.calculate_combined_score(weather_score, ndvi_score)
|
| 218 |
-
}
|
| 219 |
-
|
| 220 |
-
except Exception as e:
|
| 221 |
-
print(f"Error in location analysis: {e}")
|
| 222 |
-
return None
|
| 223 |
-
|
| 224 |
-
def analyze_trends(self, df):
|
| 225 |
-
"""Analyze weather trends and patterns"""
|
| 226 |
-
historical = df[df['type'] == 'historical']
|
| 227 |
-
forecast = df[df['type'].isin(['forecast_5day', 'forecast_extended'])]
|
| 228 |
|
| 229 |
-
|
| 230 |
-
'
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
'
|
| 238 |
-
'
|
| 239 |
-
'
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
'
|
| 243 |
-
'
|
| 244 |
-
'trend': stats.linregress(range(len(historical)), historical['rainfall'])[0]
|
| 245 |
-
}
|
| 246 |
-
},
|
| 247 |
-
'forecast': {
|
| 248 |
-
'temperature': {
|
| 249 |
-
'mean': forecast['temperature'].mean(),
|
| 250 |
-
'std': forecast['temperature'].std(),
|
| 251 |
-
},
|
| 252 |
-
'humidity': {
|
| 253 |
-
'mean': forecast['humidity'].mean(),
|
| 254 |
-
'std': forecast['humidity'].std(),
|
| 255 |
-
},
|
| 256 |
-
'rainfall': {
|
| 257 |
-
'mean': forecast['rainfall'].mean(),
|
| 258 |
-
'std': forecast['rainfall'].std(),
|
| 259 |
}
|
| 260 |
-
|
| 261 |
-
}
|
| 262 |
-
|
| 263 |
-
return analysis
|
| 264 |
-
|
| 265 |
-
def calculate_ndvi_score(self, ndvi_data):
|
| 266 |
-
"""Calculate a score based on NDVI data"""
|
| 267 |
-
if not ndvi_data or 'stats' not in ndvi_data:
|
| 268 |
-
return None
|
| 269 |
-
|
| 270 |
-
stats = ndvi_data['stats']
|
| 271 |
-
mean_ndvi = stats.get('NDVI_mean', 0)
|
| 272 |
-
|
| 273 |
-
# Convert NDVI from -1:1 scale to 0:1 scale
|
| 274 |
-
score = (mean_ndvi + 1) / 2
|
| 275 |
-
|
| 276 |
-
# Adjust score based on optimal NDVI ranges
|
| 277 |
-
if self.optimal_conditions['ndvi']['min'] <= mean_ndvi <= self.optimal_conditions['ndvi']['max']:
|
| 278 |
-
score *= 1.2 # Bonus for optimal range
|
| 279 |
-
elif mean_ndvi < 0:
|
| 280 |
-
score *= 0.5 # Penalty for very low vegetation
|
| 281 |
-
|
| 282 |
-
return min(1.0, max(0.0, score))
|
| 283 |
-
|
| 284 |
-
def calculate_weather_score(self, weather_analysis):
|
| 285 |
-
"""Calculate weather suitability score"""
|
| 286 |
-
if not weather_analysis:
|
| 287 |
-
return None
|
| 288 |
-
|
| 289 |
-
historical = weather_analysis['historical']
|
| 290 |
-
|
| 291 |
-
temp_mean = historical['temperature']['mean']
|
| 292 |
-
humidity_mean = historical['humidity']['mean']
|
| 293 |
-
rainfall_mean = historical['rainfall']['mean']
|
| 294 |
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 300 |
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
self.optimal_conditions['humidity']['min'],
|
| 304 |
-
self.optimal_conditions['humidity']['max']
|
| 305 |
-
)
|
| 306 |
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
|
|
|
| 312 |
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
def calculate_range_score(self, value, min_val, max_val):
|
| 316 |
-
"""Calculate score based on optimal range"""
|
| 317 |
-
if min_val <= value <= max_val:
|
| 318 |
-
return 1.0
|
| 319 |
-
elif value < min_val:
|
| 320 |
-
return max(0, 1 - (min_val - value) / min_val)
|
| 321 |
-
else:
|
| 322 |
-
return max(0, 1 - (value - max_val) / max_val)
|
| 323 |
|
| 324 |
-
def
|
| 325 |
-
"""
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
return weather_score
|
| 330 |
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
from geopy.geocoders import Nominatim
|
| 9 |
from geopy.exc import GeocoderTimedOut
|
| 10 |
from scipy import stats
|
|
|
|
|
|
|
| 11 |
|
| 12 |
# Get API key from environment variable
|
| 13 |
OPENWEATHER_API_KEY = os.getenv('OPENWEATHER_API_KEY', 'default_key')
|
|
|
|
| 19 |
'temperature': {'min': 20, 'max': 30},
|
| 20 |
'humidity': {'min': 60, 'max': 80},
|
| 21 |
'rainfall': {'min': 500/365, 'max': 1200/365},
|
| 22 |
+
'ndvi': {'min': 0.3, 'max': 0.8} # Added NDVI optimal range for tobacco
|
| 23 |
}
|
| 24 |
self.geolocator = Nominatim(user_agent="tobacco_analyzer")
|
| 25 |
self.seasons = {
|
|
|
|
| 28 |
7: 'Summer', 8: 'Summer', 9: 'Fall',
|
| 29 |
10: 'Fall', 11: 'Fall', 12: 'Winter'
|
| 30 |
}
|
| 31 |
+
# Tanzania-specific growing seasons
|
| 32 |
+
self.tanzania_seasons = {
|
| 33 |
+
1: 'Main', 2: 'Main', 3: 'Main', # Main growing season
|
| 34 |
+
4: 'Late', 5: 'Late', 6: 'Dry',
|
| 35 |
+
7: 'Dry', 8: 'Dry', 9: 'Early',
|
| 36 |
+
10: 'Early', 11: 'Early', 12: 'Main'
|
| 37 |
+
}
|
| 38 |
|
| 39 |
def geocode_location(self, location_name):
|
| 40 |
"""Convert location name to coordinates"""
|
|
|
|
| 44 |
return {
|
| 45 |
'lat': location.latitude,
|
| 46 |
'lon': location.longitude,
|
| 47 |
+
'address': location.address,
|
| 48 |
+
'region': self.get_tanzania_region(location.address)
|
| 49 |
}
|
| 50 |
return None
|
| 51 |
except GeocoderTimedOut:
|
| 52 |
return None
|
| 53 |
|
| 54 |
+
def get_tanzania_region(self, address):
|
| 55 |
+
"""Extract Tanzania region from address"""
|
| 56 |
+
if address:
|
| 57 |
+
address_parts = address.lower().split(',')
|
| 58 |
+
tanzania_regions = ['tabora', 'urambo', 'sikonge', 'nzega']
|
| 59 |
+
for part in address_parts:
|
| 60 |
+
if any(region in part.strip() for region in tanzania_regions):
|
| 61 |
+
return part.strip()
|
| 62 |
+
return None
|
| 63 |
+
|
| 64 |
def get_weather_data(self, lat, lon, historical_days=90, forecast_days=90):
|
| 65 |
"""Get historical and forecast weather data"""
|
| 66 |
historical_data = []
|
|
|
|
| 79 |
'humidity': data['main']['humidity'],
|
| 80 |
'rainfall': data.get('rain', {}).get('1h', 0) * 24,
|
| 81 |
'type': 'historical',
|
| 82 |
+
'description': data['weather'][0]['description'],
|
| 83 |
+
'season': self.tanzania_seasons[date.month] # Use Tanzania-specific seasons
|
| 84 |
}
|
| 85 |
historical_data.append(weather_data)
|
| 86 |
except Exception as e:
|
| 87 |
print(f"Error fetching historical data: {e}")
|
| 88 |
|
| 89 |
# Get forecast data
|
| 90 |
+
forecast_data = self.get_forecast_data(lat, lon, forecast_days)
|
| 91 |
+
|
| 92 |
+
# Combine and process all data
|
| 93 |
+
all_data = pd.DataFrame(historical_data + forecast_data)
|
| 94 |
+
if not all_data.empty:
|
| 95 |
+
all_data = all_data.sort_values('date')
|
| 96 |
+
all_data['month'] = all_data['date'].dt.month
|
| 97 |
+
all_data['season'] = all_data['month'].map(self.tanzania_seasons)
|
| 98 |
+
|
| 99 |
+
# Calculate rolling averages
|
| 100 |
+
all_data['temp_7day_avg'] = all_data['temperature'].rolling(window=7, min_periods=1).mean()
|
| 101 |
+
all_data['humidity_7day_avg'] = all_data['humidity'].rolling(window=7, min_periods=1).mean()
|
| 102 |
+
all_data['rainfall_7day_avg'] = all_data['rainfall'].rolling(window=7, min_periods=1).mean()
|
| 103 |
+
|
| 104 |
+
# Add vegetation index estimates based on weather conditions
|
| 105 |
+
all_data['estimated_ndvi'] = self.estimate_ndvi(all_data)
|
| 106 |
+
|
| 107 |
+
return all_data
|
| 108 |
+
|
| 109 |
+
def get_forecast_data(self, lat, lon, forecast_days):
|
| 110 |
+
"""Get and process forecast data"""
|
| 111 |
forecast_data = []
|
| 112 |
try:
|
| 113 |
+
# Get 5-day forecast
|
| 114 |
forecast_url = f"https://api.openweathermap.org/data/2.5/forecast?lat={lat}&lon={lon}&appid={self.api_key}&units=metric"
|
| 115 |
response = requests.get(forecast_url)
|
| 116 |
if response.status_code == 200:
|
| 117 |
data = response.json()
|
| 118 |
for item in data['list']:
|
| 119 |
+
date = datetime.fromtimestamp(item['dt'])
|
| 120 |
forecast = {
|
| 121 |
+
'date': date,
|
| 122 |
'temperature': item['main']['temp'],
|
| 123 |
'humidity': item['main']['humidity'],
|
| 124 |
'rainfall': item.get('rain', {}).get('3h', 0) * 8,
|
| 125 |
'type': 'forecast_5day',
|
| 126 |
+
'description': item['weather'][0]['description'],
|
| 127 |
+
'season': self.tanzania_seasons[date.month]
|
| 128 |
}
|
| 129 |
forecast_data.append(forecast)
|
| 130 |
|
| 131 |
+
# Generate extended forecast using historical trends
|
| 132 |
last_date = max(d['date'] for d in forecast_data)
|
| 133 |
+
forecast_data.extend(
|
| 134 |
+
self.generate_extended_forecast(forecast_data, last_date, forecast_days)
|
| 135 |
+
)
|
| 136 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 137 |
except Exception as e:
|
| 138 |
print(f"Error fetching forecast data: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 139 |
|
| 140 |
+
return forecast_data
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 141 |
|
| 142 |
+
def generate_extended_forecast(self, forecast_data, last_date, forecast_days):
|
| 143 |
+
"""Generate extended forecast data"""
|
| 144 |
+
extended_data = []
|
| 145 |
+
recent_data = pd.DataFrame(forecast_data[-5:]) # Use last 5 days for trends
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 146 |
|
| 147 |
+
if not recent_data.empty:
|
| 148 |
+
temp_trend = stats.linregress(range(len(recent_data)), recent_data['temperature'])[0]
|
| 149 |
+
humidity_trend = stats.linregress(range(len(recent_data)), recent_data['humidity'])[0]
|
| 150 |
+
rainfall_trend = stats.linregress(range(len(recent_data)), recent_data['rainfall'])[0]
|
| 151 |
+
|
| 152 |
+
for day in range(1, forecast_days - 5):
|
| 153 |
+
date = last_date + timedelta(days=day)
|
| 154 |
+
extended_forecast = {
|
| 155 |
+
'date': date,
|
| 156 |
+
'temperature': recent_data['temperature'].mean() + temp_trend * day,
|
| 157 |
+
'humidity': recent_data['humidity'].mean() + humidity_trend * day,
|
| 158 |
+
'rainfall': recent_data['rainfall'].mean() + rainfall_trend * day,
|
| 159 |
+
'type': 'forecast_extended',
|
| 160 |
+
'description': 'Extended Forecast',
|
| 161 |
+
'season': self.tanzania_seasons[date.month]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 162 |
}
|
| 163 |
+
extended_data.append(extended_forecast)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 164 |
|
| 165 |
+
return extended_data
|
| 166 |
+
|
| 167 |
+
def estimate_ndvi(self, weather_data):
|
| 168 |
+
"""Estimate NDVI based on weather conditions"""
|
| 169 |
+
# Create a baseline NDVI estimate using weather parameters
|
| 170 |
+
normalized_temp = (weather_data['temperature'] - 15) / (30 - 15)
|
| 171 |
+
normalized_humidity = (weather_data['humidity'] - 50) / (80 - 50)
|
| 172 |
+
normalized_rainfall = weather_data['rainfall'] / 5
|
| 173 |
+
|
| 174 |
+
# Season adjustment factors for Tanzania
|
| 175 |
+
season_factors = {
|
| 176 |
+
'Main': 1.0, # Best growing season
|
| 177 |
+
'Early': 0.8, # Early growing season
|
| 178 |
+
'Late': 0.7, # Late growing season
|
| 179 |
+
'Dry': 0.5 # Dry season
|
| 180 |
+
}
|
| 181 |
|
| 182 |
+
# Apply season adjustments
|
| 183 |
+
season_multiplier = weather_data['season'].map(season_factors)
|
|
|
|
|
|
|
|
|
|
| 184 |
|
| 185 |
+
# Combine factors to estimate NDVI
|
| 186 |
+
estimated_ndvi = (
|
| 187 |
+
0.4 * normalized_temp +
|
| 188 |
+
0.3 * normalized_humidity +
|
| 189 |
+
0.3 * normalized_rainfall
|
| 190 |
+
) * season_multiplier
|
| 191 |
|
| 192 |
+
# Clip values to realistic NDVI range (-1 to 1)
|
| 193 |
+
return np.clip(estimated_ndvi, -1, 1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 194 |
|
| 195 |
+
def analyze_trends(self, df):
|
| 196 |
+
"""Analyze weather trends and patterns"""
|
| 197 |
+
try:
|
| 198 |
+
historical = df[df['type'] == 'historical']
|
| 199 |
+
forecast = df[df['type'].isin(['forecast_5day', 'forecast_extended'])]
|
|
|
|
| 200 |
|
| 201 |
+
if historical.empty:
|
| 202 |
+
return None
|
| 203 |
+
|
| 204 |
+
analysis = {
|
| 205 |
+
'historical': {
|
| 206 |
+
'temperature': {
|
| 207 |
+
'mean': historical['temperature'].mean(),
|
| 208 |
+
'std': historical['temperature'].std(),
|
| 209 |
+
'trend': stats.linregress(range(len(historical)), historical['temperature'])[0]
|
| 210 |
+
},
|
| 211 |
+
'humidity': {
|
| 212 |
+
'mean': historical['humidity'].mean(),
|
| 213 |
+
'std': historical['humidity'].std(),
|
| 214 |
+
'trend': stats.linregress(range(len(historical)), historical['humidity'])[0]
|
| 215 |
+
},
|
| 216 |
+
'rainfall': {
|
| 217 |
+
'mean': historical['rainfall'].mean(),
|
| 218 |
+
'std': historical['rainfall'].std(),
|
| 219 |
+
'trend': stats.linregress(range(len(historical)), historical['rainfall'])[0]
|
| 220 |
+
},
|
| 221 |
+
'ndvi': {
|
| 222 |
+
'mean': historical['estimated_ndvi'].mean(),
|
| 223 |
+
'std': historical['estimated_ndvi'].std(),
|
| 224 |
+
'trend': stats.linregress(range(len(historical)), historical['estimated_ndvi'])[0]
|
| 225 |
+
}
|
| 226 |
+
}
|
| 227 |
+
}
|
| 228 |
+
|
| 229 |
+
if not forecast.empty:
|
| 230 |
+
analysis['forecast'] = {
|
| 231 |
+
'temperature': {
|
| 232 |
+
'mean': forecast['temperature'].mean(),
|
| 233 |
+
'std': forecast['temperature'].std(),
|
| 234 |
+
},
|
| 235 |
+
'humidity': {
|
| 236 |
+
'mean': forecast['humidity'].mean(),
|
| 237 |
+
'std': forecast['humidity'].std(),
|
| 238 |
+
},
|
| 239 |
+
'rainfall': {
|
| 240 |
+
'mean': forecast['rainfall'].mean(),
|
| 241 |
+
'std': forecast['rainfall'].std(),
|
| 242 |
+
},
|
| 243 |
+
'ndvi': {
|
| 244 |
+
'mean': forecast['estimated_ndvi'].mean(),
|
| 245 |
+
'std': forecast['estimated_ndvi'].std(),
|
| 246 |
+
}
|
| 247 |
+
}
|
| 248 |
+
|
| 249 |
+
return analysis
|
| 250 |
+
except Exception as e:
|
| 251 |
+
print(f"Error in trend analysis: {e}")
|
| 252 |
+
return None
|