Update part1_data.py
Browse files- part1_data.py +164 -5
part1_data.py
CHANGED
|
@@ -8,6 +8,8 @@ import requests
|
|
| 8 |
from geopy.geocoders import Nominatim
|
| 9 |
from geopy.exc import GeocoderTimedOut
|
| 10 |
from scipy import stats
|
|
|
|
|
|
|
| 11 |
|
| 12 |
# Get API key from environment variable
|
| 13 |
OPENWEATHER_API_KEY = os.getenv('OPENWEATHER_API_KEY', 'default_key')
|
|
@@ -18,7 +20,8 @@ class TobaccoAnalyzer:
|
|
| 18 |
self.optimal_conditions = {
|
| 19 |
'temperature': {'min': 20, 'max': 30},
|
| 20 |
'humidity': {'min': 60, 'max': 80},
|
| 21 |
-
'rainfall': {'min': 500/365, 'max': 1200/365}
|
|
|
|
| 22 |
}
|
| 23 |
self.geolocator = Nominatim(user_agent="tobacco_analyzer")
|
| 24 |
self.seasons = {
|
|
@@ -27,6 +30,13 @@ class TobaccoAnalyzer:
|
|
| 27 |
7: 'Summer', 8: 'Summer', 9: 'Fall',
|
| 28 |
10: 'Fall', 11: 'Fall', 12: 'Winter'
|
| 29 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
|
| 31 |
def geocode_location(self, location_name):
|
| 32 |
"""Convert location name to coordinates"""
|
|
@@ -69,7 +79,6 @@ class TobaccoAnalyzer:
|
|
| 69 |
# Get forecast data
|
| 70 |
forecast_data = []
|
| 71 |
try:
|
| 72 |
-
# Get 5-day forecast
|
| 73 |
forecast_url = f"https://api.openweathermap.org/data/2.5/forecast?lat={lat}&lon={lon}&appid={self.api_key}&units=metric"
|
| 74 |
response = requests.get(forecast_url)
|
| 75 |
if response.status_code == 200:
|
|
@@ -92,7 +101,6 @@ class TobaccoAnalyzer:
|
|
| 92 |
for day in range(1, forecast_days - 5):
|
| 93 |
date = last_date + timedelta(days=day)
|
| 94 |
|
| 95 |
-
# Calculate trends from historical data
|
| 96 |
if not historical_df.empty:
|
| 97 |
temp_trend = stats.linregress(range(len(historical_df)), historical_df['temperature'])[0]
|
| 98 |
humidity_trend = stats.linregress(range(len(historical_df)), historical_df['humidity'])[0]
|
|
@@ -100,7 +108,6 @@ class TobaccoAnalyzer:
|
|
| 100 |
else:
|
| 101 |
temp_trend = humidity_trend = rainfall_trend = 0
|
| 102 |
|
| 103 |
-
# Get recent averages
|
| 104 |
recent_temps = [d['temperature'] for d in forecast_data[-5:]]
|
| 105 |
recent_humidity = [d['humidity'] for d in forecast_data[-5:]]
|
| 106 |
recent_rainfall = [d['rainfall'] for d in forecast_data[-5:]]
|
|
@@ -133,6 +140,87 @@ class TobaccoAnalyzer:
|
|
| 133 |
|
| 134 |
return all_data
|
| 135 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
def analyze_trends(self, df):
|
| 137 |
"""Analyze weather trends and patterns"""
|
| 138 |
historical = df[df['type'] == 'historical']
|
|
@@ -172,4 +260,75 @@ class TobaccoAnalyzer:
|
|
| 172 |
}
|
| 173 |
}
|
| 174 |
|
| 175 |
-
return analysis
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
from geopy.geocoders import Nominatim
|
| 9 |
from geopy.exc import GeocoderTimedOut
|
| 10 |
from scipy import stats
|
| 11 |
+
import ee
|
| 12 |
+
import geemap
|
| 13 |
|
| 14 |
# Get API key from environment variable
|
| 15 |
OPENWEATHER_API_KEY = os.getenv('OPENWEATHER_API_KEY', 'default_key')
|
|
|
|
| 20 |
self.optimal_conditions = {
|
| 21 |
'temperature': {'min': 20, 'max': 30},
|
| 22 |
'humidity': {'min': 60, 'max': 80},
|
| 23 |
+
'rainfall': {'min': 500/365, 'max': 1200/365},
|
| 24 |
+
'ndvi': {'min': 0.3, 'max': 0.8} # Optimal NDVI range for tobacco
|
| 25 |
}
|
| 26 |
self.geolocator = Nominatim(user_agent="tobacco_analyzer")
|
| 27 |
self.seasons = {
|
|
|
|
| 30 |
7: 'Summer', 8: 'Summer', 9: 'Fall',
|
| 31 |
10: 'Fall', 11: 'Fall', 12: 'Winter'
|
| 32 |
}
|
| 33 |
+
# Initialize Earth Engine
|
| 34 |
+
try:
|
| 35 |
+
ee.Initialize()
|
| 36 |
+
self.ee_initialized = True
|
| 37 |
+
except Exception as e:
|
| 38 |
+
print(f"Error initializing Earth Engine: {e}")
|
| 39 |
+
self.ee_initialized = False
|
| 40 |
|
| 41 |
def geocode_location(self, location_name):
|
| 42 |
"""Convert location name to coordinates"""
|
|
|
|
| 79 |
# Get forecast data
|
| 80 |
forecast_data = []
|
| 81 |
try:
|
|
|
|
| 82 |
forecast_url = f"https://api.openweathermap.org/data/2.5/forecast?lat={lat}&lon={lon}&appid={self.api_key}&units=metric"
|
| 83 |
response = requests.get(forecast_url)
|
| 84 |
if response.status_code == 200:
|
|
|
|
| 101 |
for day in range(1, forecast_days - 5):
|
| 102 |
date = last_date + timedelta(days=day)
|
| 103 |
|
|
|
|
| 104 |
if not historical_df.empty:
|
| 105 |
temp_trend = stats.linregress(range(len(historical_df)), historical_df['temperature'])[0]
|
| 106 |
humidity_trend = stats.linregress(range(len(historical_df)), historical_df['humidity'])[0]
|
|
|
|
| 108 |
else:
|
| 109 |
temp_trend = humidity_trend = rainfall_trend = 0
|
| 110 |
|
|
|
|
| 111 |
recent_temps = [d['temperature'] for d in forecast_data[-5:]]
|
| 112 |
recent_humidity = [d['humidity'] for d in forecast_data[-5:]]
|
| 113 |
recent_rainfall = [d['rainfall'] for d in forecast_data[-5:]]
|
|
|
|
| 140 |
|
| 141 |
return all_data
|
| 142 |
|
| 143 |
+
def get_ndvi_data(self, lat, lon, radius=2000):
|
| 144 |
+
"""Get NDVI data for location"""
|
| 145 |
+
try:
|
| 146 |
+
point = ee.Geometry.Point([lon, lat])
|
| 147 |
+
area = point.buffer(radius)
|
| 148 |
+
|
| 149 |
+
end_date = datetime.now()
|
| 150 |
+
start_date = end_date - timedelta(days=90)
|
| 151 |
+
|
| 152 |
+
s2 = ee.ImageCollection('COPERNICUS/S2_SR') \
|
| 153 |
+
.filterDate(start_date.strftime('%Y-%m-%d'), end_date.strftime('%Y-%m-%d')) \
|
| 154 |
+
.filterBounds(area) \
|
| 155 |
+
.filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE', 20))
|
| 156 |
+
|
| 157 |
+
def addNDVI(image):
|
| 158 |
+
ndvi = image.normalizedDifference(['B8', 'B4']).rename('NDVI')
|
| 159 |
+
return image.addBands(ndvi)
|
| 160 |
+
|
| 161 |
+
s2_ndvi = s2.map(addNDVI)
|
| 162 |
+
ndvi_image = s2_ndvi.select('NDVI').mean()
|
| 163 |
+
|
| 164 |
+
stats = ndvi_image.reduceRegion(
|
| 165 |
+
reducer=ee.Reducer.mean().combine(
|
| 166 |
+
reducer2=ee.Reducer.stdDev(),
|
| 167 |
+
sharedInputs=True
|
| 168 |
+
).combine(
|
| 169 |
+
reducer2=ee.Reducer.minMax(),
|
| 170 |
+
sharedInputs=True
|
| 171 |
+
),
|
| 172 |
+
geometry=area,
|
| 173 |
+
scale=10,
|
| 174 |
+
maxPixels=1e9
|
| 175 |
+
).getInfo()
|
| 176 |
+
|
| 177 |
+
return {
|
| 178 |
+
'image': ndvi_image,
|
| 179 |
+
'stats': stats,
|
| 180 |
+
'area': area
|
| 181 |
+
}
|
| 182 |
+
|
| 183 |
+
except Exception as e:
|
| 184 |
+
print(f"Error fetching NDVI data: {e}")
|
| 185 |
+
return None
|
| 186 |
+
|
| 187 |
+
def analyze_location(self, location_name, historical_days=90, forecast_days=90):
|
| 188 |
+
"""Comprehensive location analysis including weather and NDVI"""
|
| 189 |
+
try:
|
| 190 |
+
location_info = self.geocode_location(location_name)
|
| 191 |
+
if not location_info:
|
| 192 |
+
raise ValueError(f"Could not find coordinates for location: {location_name}")
|
| 193 |
+
|
| 194 |
+
lat = location_info['lat']
|
| 195 |
+
lon = location_info['lon']
|
| 196 |
+
|
| 197 |
+
weather_data = self.get_weather_data(lat, lon, historical_days, forecast_days)
|
| 198 |
+
weather_analysis = self.analyze_trends(weather_data)
|
| 199 |
+
weather_score = self.calculate_weather_score(weather_analysis)
|
| 200 |
+
|
| 201 |
+
ndvi_data = None
|
| 202 |
+
ndvi_score = None
|
| 203 |
+
if self.ee_initialized:
|
| 204 |
+
try:
|
| 205 |
+
ndvi_data = self.get_ndvi_data(lat, lon)
|
| 206 |
+
ndvi_score = self.calculate_ndvi_score(ndvi_data)
|
| 207 |
+
except Exception as e:
|
| 208 |
+
print(f"Error getting NDVI data: {e}")
|
| 209 |
+
|
| 210 |
+
return {
|
| 211 |
+
'location': location_info,
|
| 212 |
+
'weather_data': weather_data,
|
| 213 |
+
'weather_analysis': weather_analysis,
|
| 214 |
+
'weather_score': weather_score,
|
| 215 |
+
'ndvi_data': ndvi_data,
|
| 216 |
+
'ndvi_score': ndvi_score,
|
| 217 |
+
'combined_score': self.calculate_combined_score(weather_score, ndvi_score)
|
| 218 |
+
}
|
| 219 |
+
|
| 220 |
+
except Exception as e:
|
| 221 |
+
print(f"Error in location analysis: {e}")
|
| 222 |
+
return None
|
| 223 |
+
|
| 224 |
def analyze_trends(self, df):
|
| 225 |
"""Analyze weather trends and patterns"""
|
| 226 |
historical = df[df['type'] == 'historical']
|
|
|
|
| 260 |
}
|
| 261 |
}
|
| 262 |
|
| 263 |
+
return analysis
|
| 264 |
+
|
| 265 |
+
def calculate_ndvi_score(self, ndvi_data):
|
| 266 |
+
"""Calculate a score based on NDVI data"""
|
| 267 |
+
if not ndvi_data or 'stats' not in ndvi_data:
|
| 268 |
+
return None
|
| 269 |
+
|
| 270 |
+
stats = ndvi_data['stats']
|
| 271 |
+
mean_ndvi = stats.get('NDVI_mean', 0)
|
| 272 |
+
|
| 273 |
+
# Convert NDVI from -1:1 scale to 0:1 scale
|
| 274 |
+
score = (mean_ndvi + 1) / 2
|
| 275 |
+
|
| 276 |
+
# Adjust score based on optimal NDVI ranges
|
| 277 |
+
if self.optimal_conditions['ndvi']['min'] <= mean_ndvi <= self.optimal_conditions['ndvi']['max']:
|
| 278 |
+
score *= 1.2 # Bonus for optimal range
|
| 279 |
+
elif mean_ndvi < 0:
|
| 280 |
+
score *= 0.5 # Penalty for very low vegetation
|
| 281 |
+
|
| 282 |
+
return min(1.0, max(0.0, score))
|
| 283 |
+
|
| 284 |
+
def calculate_weather_score(self, weather_analysis):
|
| 285 |
+
"""Calculate weather suitability score"""
|
| 286 |
+
if not weather_analysis:
|
| 287 |
+
return None
|
| 288 |
+
|
| 289 |
+
historical = weather_analysis['historical']
|
| 290 |
+
|
| 291 |
+
temp_mean = historical['temperature']['mean']
|
| 292 |
+
humidity_mean = historical['humidity']['mean']
|
| 293 |
+
rainfall_mean = historical['rainfall']['mean']
|
| 294 |
+
|
| 295 |
+
temp_score = self.calculate_range_score(
|
| 296 |
+
temp_mean,
|
| 297 |
+
self.optimal_conditions['temperature']['min'],
|
| 298 |
+
self.optimal_conditions['temperature']['max']
|
| 299 |
+
)
|
| 300 |
+
|
| 301 |
+
humidity_score = self.calculate_range_score(
|
| 302 |
+
humidity_mean,
|
| 303 |
+
self.optimal_conditions['humidity']['min'],
|
| 304 |
+
self.optimal_conditions['humidity']['max']
|
| 305 |
+
)
|
| 306 |
+
|
| 307 |
+
rainfall_score = self.calculate_range_score(
|
| 308 |
+
rainfall_mean,
|
| 309 |
+
self.optimal_conditions['rainfall']['min'],
|
| 310 |
+
self.optimal_conditions['rainfall']['max']
|
| 311 |
+
)
|
| 312 |
+
|
| 313 |
+
return (temp_score * 0.4 + humidity_score * 0.3 + rainfall_score * 0.3)
|
| 314 |
+
|
| 315 |
+
def calculate_range_score(self, value, min_val, max_val):
|
| 316 |
+
"""Calculate score based on optimal range"""
|
| 317 |
+
if min_val <= value <= max_val:
|
| 318 |
+
return 1.0
|
| 319 |
+
elif value < min_val:
|
| 320 |
+
return max(0, 1 - (min_val - value) / min_val)
|
| 321 |
+
else:
|
| 322 |
+
return max(0, 1 - (value - max_val) / max_val)
|
| 323 |
+
|
| 324 |
+
def calculate_combined_score(self, weather_score, ndvi_score):
|
| 325 |
+
"""Calculate combined suitability score"""
|
| 326 |
+
if weather_score is None:
|
| 327 |
+
return None
|
| 328 |
+
if ndvi_score is None:
|
| 329 |
+
return weather_score
|
| 330 |
+
|
| 331 |
+
weather_weight = 0.6
|
| 332 |
+
ndvi_weight = 0.4
|
| 333 |
+
|
| 334 |
+
return (weather_score * weather_weight) + (ndvi_score * ndvi_weight)
|