Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,29 +1,33 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import copy
|
|
|
|
| 3 |
import time
|
| 4 |
import llama_cpp
|
| 5 |
from llama_cpp import Llama
|
| 6 |
from huggingface_hub import hf_hub_download
|
| 7 |
-
import
|
| 8 |
-
from gradio.components import Image, Text
|
| 9 |
-
|
| 10 |
|
|
|
|
| 11 |
llm = Llama(
|
| 12 |
model_path=hf_hub_download(
|
| 13 |
repo_id=os.environ.get("REPO_ID", "TheBloke/Llama-2-7B-Chat-GGML"),
|
| 14 |
filename=os.environ.get("MODEL_FILE", "llama-2-7b-chat.ggmlv3.q5_0.bin"),
|
| 15 |
),
|
| 16 |
n_ctx=2048,
|
| 17 |
-
n_gpu_layers=50,
|
| 18 |
)
|
| 19 |
|
| 20 |
history = []
|
| 21 |
|
| 22 |
system_message = """
|
| 23 |
-
You are a
|
| 24 |
-
If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.
|
| 25 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
|
|
|
|
| 27 |
|
| 28 |
def generate_text(message, history):
|
| 29 |
temp = ""
|
|
@@ -37,13 +41,13 @@ def generate_text(message, history):
|
|
| 37 |
input_prompt,
|
| 38 |
temperature=0.15,
|
| 39 |
top_p=0.1,
|
| 40 |
-
top_k=40,
|
| 41 |
repeat_penalty=1.1,
|
| 42 |
max_tokens=1024,
|
| 43 |
stop=[
|
| 44 |
-
"
|
| 45 |
-
"
|
| 46 |
-
"
|
| 47 |
"ASSISTANT:",
|
| 48 |
"USER:",
|
| 49 |
"SYSTEM:",
|
|
@@ -57,28 +61,35 @@ def generate_text(message, history):
|
|
| 57 |
|
| 58 |
history = ["init", input_prompt]
|
| 59 |
|
| 60 |
-
|
| 61 |
def predict(img):
|
| 62 |
try:
|
| 63 |
img = PILImage.create(img)
|
| 64 |
except:
|
| 65 |
return {"bird": "Unknown"}
|
| 66 |
-
pred,pred_idx,probs = learn.predict(img)
|
| 67 |
-
return {labels[i]: float(probs[i]) for i in range(len(labels))}
|
| 68 |
|
| 69 |
-
title = "Bird Detector"
|
| 70 |
-
description = "
|
| 71 |
-
examples = [
|
| 72 |
-
interpretation='default'
|
| 73 |
-
enable_queue=True
|
| 74 |
|
| 75 |
def combined(img, message):
|
| 76 |
prediction = predict(img)
|
| 77 |
-
response = generate_text(message, history)
|
| 78 |
-
if "I have detected" in response:
|
| 79 |
-
response = response.replace("I have detected", f"I have detected {prediction['bird']} in the image.")
|
| 80 |
-
|
| 81 |
return response
|
| 82 |
|
| 83 |
-
|
| 84 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import copy
|
| 3 |
+
import os
|
| 4 |
import time
|
| 5 |
import llama_cpp
|
| 6 |
from llama_cpp import Llama
|
| 7 |
from huggingface_hub import hf_hub_download
|
| 8 |
+
from fastai.vision.all import *
|
|
|
|
|
|
|
| 9 |
|
| 10 |
+
# Load the LLM model
|
| 11 |
llm = Llama(
|
| 12 |
model_path=hf_hub_download(
|
| 13 |
repo_id=os.environ.get("REPO_ID", "TheBloke/Llama-2-7B-Chat-GGML"),
|
| 14 |
filename=os.environ.get("MODEL_FILE", "llama-2-7b-chat.ggmlv3.q5_0.bin"),
|
| 15 |
),
|
| 16 |
n_ctx=2048,
|
| 17 |
+
n_gpu_layers=50, # change n_gpu_layers if you have more or less VRAM
|
| 18 |
)
|
| 19 |
|
| 20 |
history = []
|
| 21 |
|
| 22 |
system_message = """
|
| 23 |
+
You are a BIRD EXPERT
|
|
|
|
| 24 |
"""
|
| 25 |
+
# The rest of the system message
|
| 26 |
+
|
| 27 |
+
# Load the Vision Model
|
| 28 |
+
learn = load_learner('export.pkl')
|
| 29 |
|
| 30 |
+
labels = learn.dls.vocab
|
| 31 |
|
| 32 |
def generate_text(message, history):
|
| 33 |
temp = ""
|
|
|
|
| 41 |
input_prompt,
|
| 42 |
temperature=0.15,
|
| 43 |
top_p=0.1,
|
| 44 |
+
top_k=40,
|
| 45 |
repeat_penalty=1.1,
|
| 46 |
max_tokens=1024,
|
| 47 |
stop=[
|
| 48 |
+
"",
|
| 49 |
+
"",
|
| 50 |
+
" \n",
|
| 51 |
"ASSISTANT:",
|
| 52 |
"USER:",
|
| 53 |
"SYSTEM:",
|
|
|
|
| 61 |
|
| 62 |
history = ["init", input_prompt]
|
| 63 |
|
|
|
|
| 64 |
def predict(img):
|
| 65 |
try:
|
| 66 |
img = PILImage.create(img)
|
| 67 |
except:
|
| 68 |
return {"bird": "Unknown"}
|
| 69 |
+
pred, pred_idx, probs = learn.predict(img)
|
| 70 |
+
return {"bird": labels[pred_idx], "probs": {labels[i]: float(probs[i]) for i in range(len(labels))}}
|
| 71 |
|
| 72 |
+
title = "Bird Detector with LLM"
|
| 73 |
+
description = "Detect birds and get LLM responses."
|
| 74 |
+
examples = [{"img": "BIRD.jpg", "message": "Tell me about the bird."}]
|
| 75 |
+
interpretation = 'default'
|
| 76 |
+
enable_queue = True
|
| 77 |
|
| 78 |
def combined(img, message):
|
| 79 |
prediction = predict(img)
|
| 80 |
+
response = list(generate_text(f"I have detected {prediction['bird']} in the image. {message}", history))
|
|
|
|
|
|
|
|
|
|
| 81 |
return response
|
| 82 |
|
| 83 |
+
gr.Interface(
|
| 84 |
+
fn=combined,
|
| 85 |
+
inputs=[
|
| 86 |
+
gr.inputs.Image(),
|
| 87 |
+
gr.inputs.Textbox(label="Message to LLM")
|
| 88 |
+
],
|
| 89 |
+
outputs=gr.outputs.Textbox(),
|
| 90 |
+
title=title,
|
| 91 |
+
description=description,
|
| 92 |
+
examples=examples,
|
| 93 |
+
interpretation=interpretation,
|
| 94 |
+
enable_queue=enable_queue,
|
| 95 |
+
).launch()
|