Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,33 +1,29 @@
|
|
|
|
1 |
import gradio as gr
|
|
|
|
|
2 |
import copy
|
3 |
-
import os
|
4 |
-
import time
|
5 |
-
import llama_cpp
|
6 |
from llama_cpp import Llama
|
7 |
from huggingface_hub import hf_hub_download
|
8 |
-
from fastai.vision.all import *
|
9 |
|
10 |
-
# Load the
|
|
|
|
|
|
|
|
|
11 |
llm = Llama(
|
12 |
model_path=hf_hub_download(
|
13 |
repo_id=os.environ.get("REPO_ID", "TheBloke/Llama-2-7B-Chat-GGML"),
|
14 |
filename=os.environ.get("MODEL_FILE", "llama-2-7b-chat.ggmlv3.q5_0.bin"),
|
15 |
),
|
16 |
n_ctx=2048,
|
17 |
-
n_gpu_layers=50,
|
18 |
)
|
19 |
|
20 |
history = []
|
21 |
-
|
22 |
system_message = """
|
23 |
-
You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe
|
24 |
"""
|
25 |
-
# The rest of the system message
|
26 |
-
|
27 |
-
# Load the Vision Model
|
28 |
-
learn = load_learner('export.pkl')
|
29 |
-
|
30 |
-
labels = learn.dls.vocab
|
31 |
|
32 |
def generate_text(message, history):
|
33 |
temp = ""
|
@@ -59,36 +55,25 @@ def generate_text(message, history):
|
|
59 |
temp += stream["choices"][0]["text"]
|
60 |
yield temp
|
61 |
|
62 |
-
history
|
|
|
63 |
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
except:
|
68 |
-
return {"bird": "Unknown"}
|
69 |
pred, pred_idx, probs = learn.predict(img)
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
enable_queue = True
|
77 |
-
|
78 |
-
def combined(img, message):
|
79 |
-
prediction = predict(img)
|
80 |
-
response = list(generate_text(f"I have detected {prediction['bird']} in the image. {message}", history))
|
81 |
-
return response[0] # Return the first generated response
|
82 |
|
|
|
83 |
gr.Interface(
|
84 |
-
fn=
|
85 |
-
inputs=
|
86 |
-
gr.inputs.Image(),
|
87 |
-
gr.inputs.Textbox(label="Message to LLM")
|
88 |
-
],
|
89 |
outputs=gr.outputs.Textbox(),
|
90 |
-
title=
|
91 |
-
description=
|
92 |
-
examples=examples,
|
93 |
-
interpretation=interpretation,
|
94 |
).launch()
|
|
|
1 |
+
import os
|
2 |
import gradio as gr
|
3 |
+
from fastai.vision.all import *
|
4 |
+
import skimage
|
5 |
import copy
|
|
|
|
|
|
|
6 |
from llama_cpp import Llama
|
7 |
from huggingface_hub import hf_hub_download
|
|
|
8 |
|
9 |
+
# Load the FastAI vision model
|
10 |
+
learn = load_learner('export.pkl')
|
11 |
+
labels = learn.dls.vocab
|
12 |
+
|
13 |
+
# Load the Llama language model
|
14 |
llm = Llama(
|
15 |
model_path=hf_hub_download(
|
16 |
repo_id=os.environ.get("REPO_ID", "TheBloke/Llama-2-7B-Chat-GGML"),
|
17 |
filename=os.environ.get("MODEL_FILE", "llama-2-7b-chat.ggmlv3.q5_0.bin"),
|
18 |
),
|
19 |
n_ctx=2048,
|
20 |
+
n_gpu_layers=50,
|
21 |
)
|
22 |
|
23 |
history = []
|
|
|
24 |
system_message = """
|
25 |
+
You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe.
|
26 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
def generate_text(message, history):
|
29 |
temp = ""
|
|
|
55 |
temp += stream["choices"][0]["text"]
|
56 |
yield temp
|
57 |
|
58 |
+
history.append(("USER:", message))
|
59 |
+
history.append(("ASSISTANT:", temp))
|
60 |
|
61 |
+
# Define the predict function for the FastAI model
|
62 |
+
def predict_with_llama_and_generate_text(img):
|
63 |
+
img = PILImage.create(img)
|
|
|
|
|
64 |
pred, pred_idx, probs = learn.predict(img)
|
65 |
+
detected_object = labels[pred_idx]
|
66 |
+
|
67 |
+
response = f"The system has detected {detected_object}. Do you want to know about {detected_object}?"
|
68 |
+
|
69 |
+
for llama_response in generate_text(response, history):
|
70 |
+
yield llama_response
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
+
# Define the Gradio interface
|
73 |
gr.Interface(
|
74 |
+
fn=predict_with_llama_and_generate_text,
|
75 |
+
inputs=gr.inputs.Image(shape=(512, 512)),
|
|
|
|
|
|
|
76 |
outputs=gr.outputs.Textbox(),
|
77 |
+
title="Multimodal Assistant",
|
78 |
+
description="An AI model that combines image classification with text generation.",
|
|
|
|
|
79 |
).launch()
|