Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,33 +1,29 @@
|
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
| 2 |
import copy
|
| 3 |
-
import os
|
| 4 |
-
import time
|
| 5 |
-
import llama_cpp
|
| 6 |
from llama_cpp import Llama
|
| 7 |
from huggingface_hub import hf_hub_download
|
| 8 |
-
from fastai.vision.all import *
|
| 9 |
|
| 10 |
-
# Load the
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
llm = Llama(
|
| 12 |
model_path=hf_hub_download(
|
| 13 |
repo_id=os.environ.get("REPO_ID", "TheBloke/Llama-2-7B-Chat-GGML"),
|
| 14 |
filename=os.environ.get("MODEL_FILE", "llama-2-7b-chat.ggmlv3.q5_0.bin"),
|
| 15 |
),
|
| 16 |
n_ctx=2048,
|
| 17 |
-
n_gpu_layers=50,
|
| 18 |
)
|
| 19 |
|
| 20 |
history = []
|
| 21 |
-
|
| 22 |
system_message = """
|
| 23 |
-
You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe
|
| 24 |
"""
|
| 25 |
-
# The rest of the system message
|
| 26 |
-
|
| 27 |
-
# Load the Vision Model
|
| 28 |
-
learn = load_learner('export.pkl')
|
| 29 |
-
|
| 30 |
-
labels = learn.dls.vocab
|
| 31 |
|
| 32 |
def generate_text(message, history):
|
| 33 |
temp = ""
|
|
@@ -59,36 +55,25 @@ def generate_text(message, history):
|
|
| 59 |
temp += stream["choices"][0]["text"]
|
| 60 |
yield temp
|
| 61 |
|
| 62 |
-
history
|
|
|
|
| 63 |
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
except:
|
| 68 |
-
return {"bird": "Unknown"}
|
| 69 |
pred, pred_idx, probs = learn.predict(img)
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
enable_queue = True
|
| 77 |
-
|
| 78 |
-
def combined(img, message):
|
| 79 |
-
prediction = predict(img)
|
| 80 |
-
response = list(generate_text(f"I have detected {prediction['bird']} in the image. {message}", history))
|
| 81 |
-
return response[0] # Return the first generated response
|
| 82 |
|
|
|
|
| 83 |
gr.Interface(
|
| 84 |
-
fn=
|
| 85 |
-
inputs=
|
| 86 |
-
gr.inputs.Image(),
|
| 87 |
-
gr.inputs.Textbox(label="Message to LLM")
|
| 88 |
-
],
|
| 89 |
outputs=gr.outputs.Textbox(),
|
| 90 |
-
title=
|
| 91 |
-
description=
|
| 92 |
-
examples=examples,
|
| 93 |
-
interpretation=interpretation,
|
| 94 |
).launch()
|
|
|
|
| 1 |
+
import os
|
| 2 |
import gradio as gr
|
| 3 |
+
from fastai.vision.all import *
|
| 4 |
+
import skimage
|
| 5 |
import copy
|
|
|
|
|
|
|
|
|
|
| 6 |
from llama_cpp import Llama
|
| 7 |
from huggingface_hub import hf_hub_download
|
|
|
|
| 8 |
|
| 9 |
+
# Load the FastAI vision model
|
| 10 |
+
learn = load_learner('export.pkl')
|
| 11 |
+
labels = learn.dls.vocab
|
| 12 |
+
|
| 13 |
+
# Load the Llama language model
|
| 14 |
llm = Llama(
|
| 15 |
model_path=hf_hub_download(
|
| 16 |
repo_id=os.environ.get("REPO_ID", "TheBloke/Llama-2-7B-Chat-GGML"),
|
| 17 |
filename=os.environ.get("MODEL_FILE", "llama-2-7b-chat.ggmlv3.q5_0.bin"),
|
| 18 |
),
|
| 19 |
n_ctx=2048,
|
| 20 |
+
n_gpu_layers=50,
|
| 21 |
)
|
| 22 |
|
| 23 |
history = []
|
|
|
|
| 24 |
system_message = """
|
| 25 |
+
You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe.
|
| 26 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
def generate_text(message, history):
|
| 29 |
temp = ""
|
|
|
|
| 55 |
temp += stream["choices"][0]["text"]
|
| 56 |
yield temp
|
| 57 |
|
| 58 |
+
history.append(("USER:", message))
|
| 59 |
+
history.append(("ASSISTANT:", temp))
|
| 60 |
|
| 61 |
+
# Define the predict function for the FastAI model
|
| 62 |
+
def predict_with_llama_and_generate_text(img):
|
| 63 |
+
img = PILImage.create(img)
|
|
|
|
|
|
|
| 64 |
pred, pred_idx, probs = learn.predict(img)
|
| 65 |
+
detected_object = labels[pred_idx]
|
| 66 |
+
|
| 67 |
+
response = f"The system has detected {detected_object}. Do you want to know about {detected_object}?"
|
| 68 |
+
|
| 69 |
+
for llama_response in generate_text(response, history):
|
| 70 |
+
yield llama_response
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
|
| 72 |
+
# Define the Gradio interface
|
| 73 |
gr.Interface(
|
| 74 |
+
fn=predict_with_llama_and_generate_text,
|
| 75 |
+
inputs=gr.inputs.Image(shape=(512, 512)),
|
|
|
|
|
|
|
|
|
|
| 76 |
outputs=gr.outputs.Textbox(),
|
| 77 |
+
title="Multimodal Assistant",
|
| 78 |
+
description="An AI model that combines image classification with text generation.",
|
|
|
|
|
|
|
| 79 |
).launch()
|