Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
import os
|
2 |
-
import
|
3 |
from sentence_transformers import SentenceTransformer
|
4 |
from sklearn.metrics.pairwise import cosine_similarity
|
5 |
import numpy as np
|
@@ -15,24 +15,16 @@ df = pd.read_csv('combined_questions_and_answers.csv')
|
|
15 |
# Encode all questions in the dataset
|
16 |
question_embeddings = model.encode(df['Question'].tolist())
|
17 |
|
18 |
-
# Hugging Face API details for Meta-Llama
|
19 |
-
|
20 |
-
headers = {"Authorization": f"Bearer {os.getenv('HUGGINGFACE_API_KEY')}"}
|
21 |
|
22 |
-
# Function to
|
23 |
def refine_text(prompt):
|
24 |
-
|
25 |
-
"
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
}
|
30 |
-
}
|
31 |
-
response = requests.post(API_URL, headers=headers, json=payload)
|
32 |
-
response_json = response.json()
|
33 |
-
if isinstance(response_json, list) and len(response_json) > 0:
|
34 |
-
return response_json[0].get('generated_text', '')
|
35 |
-
return "Error in refining text."
|
36 |
|
37 |
# Function to find the most similar question and provide the answer
|
38 |
def get_answer(user_question, threshold=0.30):
|
@@ -49,7 +41,7 @@ def get_answer(user_question, threshold=0.30):
|
|
49 |
similar_question_idx = np.argmax(similarities)
|
50 |
# Retrieve the corresponding answer
|
51 |
answer = df.iloc[similar_question_idx]['Answer']
|
52 |
-
# Refine the answer using Meta-Llama
|
53 |
refined_answer = refine_text(f"Refine this answer: {answer}")
|
54 |
return refined_answer, max_similarity
|
55 |
else:
|
|
|
1 |
import os
|
2 |
+
from transformers import pipeline
|
3 |
from sentence_transformers import SentenceTransformer
|
4 |
from sklearn.metrics.pairwise import cosine_similarity
|
5 |
import numpy as np
|
|
|
15 |
# Encode all questions in the dataset
|
16 |
question_embeddings = model.encode(df['Question'].tolist())
|
17 |
|
18 |
+
# Hugging Face API details for Meta-Llama 3B
|
19 |
+
pipe = pipeline("text-generation", model="meta-llama/Meta-Llama-3-8B-Instruct")
|
|
|
20 |
|
21 |
+
# Function to refine and translate text using Meta-Llama 3B
|
22 |
def refine_text(prompt):
|
23 |
+
messages = [
|
24 |
+
{"role": "user", "content": prompt},
|
25 |
+
]
|
26 |
+
response = pipe(messages)
|
27 |
+
return response[0]['generated_text']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
# Function to find the most similar question and provide the answer
|
30 |
def get_answer(user_question, threshold=0.30):
|
|
|
41 |
similar_question_idx = np.argmax(similarities)
|
42 |
# Retrieve the corresponding answer
|
43 |
answer = df.iloc[similar_question_idx]['Answer']
|
44 |
+
# Refine the answer using Meta-Llama 3B
|
45 |
refined_answer = refine_text(f"Refine this answer: {answer}")
|
46 |
return refined_answer, max_similarity
|
47 |
else:
|