Spaces:
Runtime error
Runtime error
Commit
Β·
3eecb30
1
Parent(s):
c4d4142
added application
Browse files- app.py +213 -0
- demo/P0.jpg +0 -0
- demo/P1.jpg +0 -0
- demo/P10.jpg +0 -0
- demo/P2.jpg +0 -0
- demo/P3.jpg +0 -0
- demo/P4.jpg +0 -0
- demo/P5.jpg +0 -0
- demo/P6.jpg +0 -0
- demo/P7.jpg +0 -0
- demo/P8.jpg +0 -0
- demo/P9.jpg +0 -0
- requirements.txt +13 -0
app.py
ADDED
@@ -0,0 +1,213 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, StoppingCriteria
|
4 |
+
import gradio as gr
|
5 |
+
import torch
|
6 |
+
import numpy as np
|
7 |
+
import torch
|
8 |
+
import torchvision.transforms as T
|
9 |
+
from PIL import Image
|
10 |
+
from torchvision.transforms.functional import InterpolationMode
|
11 |
+
from transformers import AutoModel, AutoTokenizer
|
12 |
+
import os
|
13 |
+
from threading import Thread
|
14 |
+
import re
|
15 |
+
import time
|
16 |
+
from PIL import Image
|
17 |
+
import torch
|
18 |
+
import spaces
|
19 |
+
import subprocess
|
20 |
+
from time import sleep
|
21 |
+
import base64
|
22 |
+
from io import BytesIO
|
23 |
+
|
24 |
+
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
25 |
+
|
26 |
+
# torch.set_default_device('cuda')
|
27 |
+
|
28 |
+
IMAGENET_MEAN = (0.485, 0.456, 0.406)
|
29 |
+
IMAGENET_STD = (0.229, 0.224, 0.225)
|
30 |
+
|
31 |
+
def build_transform(input_size):
|
32 |
+
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
|
33 |
+
transform = T.Compose([
|
34 |
+
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
|
35 |
+
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
|
36 |
+
T.ToTensor(),
|
37 |
+
T.Normalize(mean=MEAN, std=STD)
|
38 |
+
])
|
39 |
+
return transform
|
40 |
+
|
41 |
+
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
|
42 |
+
best_ratio_diff = float('inf')
|
43 |
+
best_ratio = (1, 1)
|
44 |
+
area = width * height
|
45 |
+
for ratio in target_ratios:
|
46 |
+
target_aspect_ratio = ratio[0] / ratio[1]
|
47 |
+
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
|
48 |
+
if ratio_diff < best_ratio_diff:
|
49 |
+
best_ratio_diff = ratio_diff
|
50 |
+
best_ratio = ratio
|
51 |
+
elif ratio_diff == best_ratio_diff:
|
52 |
+
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
|
53 |
+
best_ratio = ratio
|
54 |
+
return best_ratio
|
55 |
+
|
56 |
+
def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
|
57 |
+
orig_width, orig_height = image.size
|
58 |
+
aspect_ratio = orig_width / orig_height
|
59 |
+
|
60 |
+
# calculate the existing image aspect ratio
|
61 |
+
target_ratios = set(
|
62 |
+
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
|
63 |
+
i * j <= max_num and i * j >= min_num)
|
64 |
+
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
|
65 |
+
|
66 |
+
# find the closest aspect ratio to the target
|
67 |
+
target_aspect_ratio = find_closest_aspect_ratio(
|
68 |
+
aspect_ratio, target_ratios, orig_width, orig_height, image_size)
|
69 |
+
|
70 |
+
# calculate the target width and height
|
71 |
+
target_width = image_size * target_aspect_ratio[0]
|
72 |
+
target_height = image_size * target_aspect_ratio[1]
|
73 |
+
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
|
74 |
+
|
75 |
+
# resize the image
|
76 |
+
resized_img = image.resize((target_width, target_height))
|
77 |
+
processed_images = []
|
78 |
+
for i in range(blocks):
|
79 |
+
box = (
|
80 |
+
(i % (target_width // image_size)) * image_size,
|
81 |
+
(i // (target_width // image_size)) * image_size,
|
82 |
+
((i % (target_width // image_size)) + 1) * image_size,
|
83 |
+
((i // (target_width // image_size)) + 1) * image_size
|
84 |
+
)
|
85 |
+
# split the image
|
86 |
+
split_img = resized_img.crop(box)
|
87 |
+
processed_images.append(split_img)
|
88 |
+
assert len(processed_images) == blocks
|
89 |
+
if use_thumbnail and len(processed_images) != 1:
|
90 |
+
thumbnail_img = image.resize((image_size, image_size))
|
91 |
+
processed_images.append(thumbnail_img)
|
92 |
+
return processed_images
|
93 |
+
|
94 |
+
def load_image(image_file, input_size=448, max_num=12):
|
95 |
+
if isinstance(image_file, str): # Check if it's a file path
|
96 |
+
image = Image.open(image_file).convert('RGB')
|
97 |
+
else: # Assume it's a base64 string
|
98 |
+
image_data = base64.b64decode(image_file)
|
99 |
+
image = Image.open(BytesIO(image_data)).convert('RGB')
|
100 |
+
|
101 |
+
transform = build_transform(input_size=input_size)
|
102 |
+
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
|
103 |
+
pixel_values = [transform(image) for image in images]
|
104 |
+
pixel_values = torch.stack(pixel_values)
|
105 |
+
return pixel_values
|
106 |
+
|
107 |
+
model_name = "lycaoduong/KLPintern-v2-1B"
|
108 |
+
|
109 |
+
access_token = os.getenv("LPInternVL21B")
|
110 |
+
|
111 |
+
model = AutoModel.from_pretrained(
|
112 |
+
model_name,
|
113 |
+
torch_dtype=torch.bfloat16,
|
114 |
+
low_cpu_mem_usage=True,
|
115 |
+
trust_remote_code=True,
|
116 |
+
token=access_token
|
117 |
+
).eval()
|
118 |
+
|
119 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, use_fast=False, token=access_token)
|
120 |
+
|
121 |
+
|
122 |
+
@spaces.GPU
|
123 |
+
def chat(message, history):
|
124 |
+
# print(history)
|
125 |
+
# print(message)
|
126 |
+
model.to('cuda')
|
127 |
+
|
128 |
+
test_image = message["files"][0]
|
129 |
+
|
130 |
+
pixel_values = load_image(test_image, max_num=12).to(torch.bfloat16).cuda()
|
131 |
+
generation_config = dict(max_new_tokens= 1024, do_sample=True, num_beams = 3, repetition_penalty=2.5)
|
132 |
+
|
133 |
+
question = '<image>\n'+message["text"]
|
134 |
+
response, conv_history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
|
135 |
+
|
136 |
+
# print(f'User: {question}\nAssistant: {response}')
|
137 |
+
|
138 |
+
txt_stream = ''
|
139 |
+
for c in response:
|
140 |
+
sleep(0.01)
|
141 |
+
txt_stream = txt_stream + c
|
142 |
+
yield txt_stream
|
143 |
+
|
144 |
+
# return response
|
145 |
+
|
146 |
+
|
147 |
+
CSS ="""
|
148 |
+
# @media only screen and (max-width: 600px){
|
149 |
+
# #component-3 {
|
150 |
+
# height: 90dvh !important;
|
151 |
+
# transform-origin: top; /* Ensure that the element expands from top to bottom. */
|
152 |
+
# border-style: solid;
|
153 |
+
# overflow: hidden;
|
154 |
+
# flex-grow: 1;
|
155 |
+
# min-width: min(160px, 100%);
|
156 |
+
# border-width: var(--block-border-width);
|
157 |
+
# }
|
158 |
+
# }
|
159 |
+
#component-3 {
|
160 |
+
height: 50dvh !important;
|
161 |
+
transform-origin: top; /* Ensure that the element expands from top to bottom. */
|
162 |
+
border-style: solid;
|
163 |
+
overflow: hidden;
|
164 |
+
flex-grow: 1;
|
165 |
+
min-width: min(160px, 100%);
|
166 |
+
border-width: var(--block-border-width);
|
167 |
+
}
|
168 |
+
/* Ensure that the image inside the button is displayed correctly for buttons with a specified aria-label. */
|
169 |
+
button.svelte-1lcyrx4[aria-label="user's message: a file of type image/jpeg, "] img.svelte-1pijsyv {
|
170 |
+
width: 100%;
|
171 |
+
object-fit: contain;
|
172 |
+
height: 100%;
|
173 |
+
border-radius: 13px; /* Add rounded corners to the image. */
|
174 |
+
max-width: 50vw; /* Limit the image width. */
|
175 |
+
}
|
176 |
+
/* Set the height for the button and allow text selection only for buttons with a specified aria-label. */
|
177 |
+
button.svelte-1lcyrx4[aria-label="user's message: a file of type image/jpeg, "] {
|
178 |
+
user-select: text;
|
179 |
+
text-align: left;
|
180 |
+
height: 300px;
|
181 |
+
}
|
182 |
+
/* Add border-radius and limit the width for images that do not belong to the avatar container. */
|
183 |
+
.message-wrap.svelte-1lcyrx4 > div.svelte-1lcyrx4 .svelte-1lcyrx4:not(.avatar-container) img {
|
184 |
+
border-radius: 13px;
|
185 |
+
max-width: 50vw;
|
186 |
+
}
|
187 |
+
.message-wrap.svelte-1lcyrx4 .message.svelte-1lcyrx4 img {
|
188 |
+
margin: var(--size-2);
|
189 |
+
max-height: 500px;
|
190 |
+
}
|
191 |
+
"""
|
192 |
+
|
193 |
+
|
194 |
+
demo = gr.ChatInterface(
|
195 |
+
fn=chat,
|
196 |
+
description="Test Korean License Plate OCR VLMs in this demo.",
|
197 |
+
examples=[{"text": "Extract LPR information, return in JSON format.", "files":["./demo/P0.jpg"]},
|
198 |
+
{"text": "Extract LPR information.", "files":["./demo/P1.jpg"]},
|
199 |
+
{"text": "Extract LPR information.", "files":["./demo/P2.jpg"]},
|
200 |
+
{"text": "Extract LPR information.", "files":["./demo/P3.jpg"]},
|
201 |
+
{"text": "Extract LPR information.", "files":["./demo/P4.jpg"]},
|
202 |
+
{"text": "Extract LPR information.", "files":["./demo/P5.jpg"]},
|
203 |
+
{"text": "Extract LPR information.", "files":["./demo/P6.jpg"]},
|
204 |
+
{"text": "Extract LPR information.", "files":["./demo/P7.jpg"]},
|
205 |
+
{"text": "Extract LPR information.", "files":["./demo/P8.jpg"]},
|
206 |
+
{"text": "Extract LPR information.", "files":["./demo/P9.jpg"]},
|
207 |
+
{"text": "Extract LPR information.", "files":["./demo/P10.jpg"]},
|
208 |
+
],
|
209 |
+
title="βοΈ InternVL2-1B fine-tuned for Korean License Plate recognition.βοΈ",
|
210 |
+
multimodal=True,
|
211 |
+
css=CSS
|
212 |
+
)
|
213 |
+
demo.queue().launch()
|
demo/P0.jpg
ADDED
![]() |
demo/P1.jpg
ADDED
![]() |
demo/P10.jpg
ADDED
![]() |
demo/P2.jpg
ADDED
![]() |
demo/P3.jpg
ADDED
![]() |
demo/P4.jpg
ADDED
![]() |
demo/P5.jpg
ADDED
![]() |
demo/P6.jpg
ADDED
![]() |
demo/P7.jpg
ADDED
![]() |
demo/P8.jpg
ADDED
![]() |
demo/P9.jpg
ADDED
![]() |
requirements.txt
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
# git+https://github.com/huggingface/transformers.git
|
3 |
+
spaces
|
4 |
+
pillow
|
5 |
+
accelerate
|
6 |
+
pypandoc
|
7 |
+
fastapi
|
8 |
+
wheel
|
9 |
+
torchvision
|
10 |
+
imageio
|
11 |
+
timm
|
12 |
+
transformers==4.44.2
|
13 |
+
gradio==4.44.1
|