Spaces:
Running
Running
| import nbformat | |
| from nbformat.v4 import new_notebook, new_markdown_cell, new_code_cell | |
| from nbconvert import HTMLExporter | |
| from huggingface_hub import InferenceClient | |
| from e2b_code_interpreter import Sandbox | |
| from transformers import AutoTokenizer | |
| from traitlets.config import Config | |
| config = Config() | |
| html_exporter = HTMLExporter(config=config, template_name="classic") | |
| with open("llama3_template.jinja", "r") as f: | |
| llama_template = f.read() | |
| MAX_TURNS = 4 | |
| def parse_exec_result_nb(execution): | |
| """Convert an E2B Execution object to Jupyter notebook cell output format""" | |
| outputs = [] | |
| if execution.logs.stdout: | |
| outputs.append({ | |
| 'output_type': 'stream', | |
| 'name': 'stdout', | |
| 'text': ''.join(execution.logs.stdout) | |
| }) | |
| if execution.logs.stderr: | |
| outputs.append({ | |
| 'output_type': 'stream', | |
| 'name': 'stderr', | |
| 'text': ''.join(execution.logs.stderr) | |
| }) | |
| if execution.error: | |
| outputs.append({ | |
| 'output_type': 'error', | |
| 'ename': execution.error.name, | |
| 'evalue': execution.error.value, | |
| 'traceback': [line for line in execution.error.traceback.split('\n')] | |
| }) | |
| for result in execution.results: | |
| output = { | |
| 'output_type': 'execute_result' if result.is_main_result else 'display_data', | |
| 'metadata': {}, | |
| 'data': {} | |
| } | |
| if result.text: | |
| output['data']['text/plain'] = [result.text] # Array for text/plain | |
| if result.html: | |
| output['data']['text/html'] = result.html | |
| if result.png: | |
| output['data']['image/png'] = result.png | |
| if result.svg: | |
| output['data']['image/svg+xml'] = result.svg | |
| if result.jpeg: | |
| output['data']['image/jpeg'] = result.jpeg | |
| if result.pdf: | |
| output['data']['application/pdf'] = result.pdf | |
| if result.latex: | |
| output['data']['text/latex'] = result.latex | |
| if result.json: | |
| output['data']['application/json'] = result.json | |
| if result.javascript: | |
| output['data']['application/javascript'] = result.javascript | |
| if result.is_main_result and execution.execution_count is not None: | |
| output['execution_count'] = execution.execution_count | |
| if output['data']: | |
| outputs.append(output) | |
| return outputs | |
| system_template = """\ | |
| <details> | |
| <summary style="display: flex; align-items: center;"> | |
| <div class="alert alert-block alert-info" style="margin: 0; width: 100%;"> | |
| <b>System: <span class="arrow">▶</span></b> | |
| </div> | |
| </summary> | |
| <div class="alert alert-block alert-info"> | |
| {} | |
| </div> | |
| </details> | |
| <style> | |
| details > summary .arrow {{ | |
| display: inline-block; | |
| transition: transform 0.2s; | |
| }} | |
| details[open] > summary .arrow {{ | |
| transform: rotate(90deg); | |
| }} | |
| </style> | |
| """ | |
| user_template = """<div class="alert alert-block alert-success"> | |
| <b>User:</b> {} | |
| </div> | |
| """ | |
| header_message = """<p align="center"> | |
| <img src="https://huggingface.co/spaces/lvwerra/jupyter-agent/resolve/main/jupyter-agent.png" /> | |
| </p> | |
| <p style="text-align:center;">Let a LLM agent write and execute code inside a notebook!</p>""" | |
| bad_html_bad = """input[type="file"] { | |
| display: block; | |
| }""" | |
| def create_base_notebook(messages): | |
| base_notebook = { | |
| "metadata": { | |
| "kernel_info": {"name": "python3"}, | |
| "language_info": { | |
| "name": "python", | |
| "version": "3.12", | |
| }, | |
| }, | |
| "nbformat": 4, | |
| "nbformat_minor": 0, | |
| "cells": [] | |
| } | |
| base_notebook["cells"].append({ | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": header_message | |
| }) | |
| if len(messages)==0: | |
| base_notebook["cells"].append({ | |
| "cell_type": "code", | |
| "execution_count": None, | |
| "metadata": {}, | |
| "source": "", | |
| "outputs": [] | |
| }) | |
| code_cell_counter = 0 | |
| for message in messages: | |
| if message["role"] == "system": | |
| text = system_template.format(message["content"].replace('\n', '<br>')) | |
| base_notebook["cells"].append({ | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": text | |
| }) | |
| elif message["role"] == "user": | |
| text = user_template.format(message["content"].replace('\n', '<br>')) | |
| base_notebook["cells"].append({ | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": text | |
| }) | |
| elif message["role"] == "assistant" and "tool_calls" in message: | |
| base_notebook["cells"].append({ | |
| "cell_type": "code", | |
| "execution_count": None, | |
| "metadata": {}, | |
| "source": message["content"], | |
| "outputs": [] | |
| }) | |
| elif message["role"] == "ipython": | |
| code_cell_counter +=1 | |
| base_notebook["cells"][-1]["outputs"] = message["nbformat"] | |
| base_notebook["cells"][-1]["execution_count"] = code_cell_counter | |
| elif message["role"] == "assistant" and "tool_calls" not in message: | |
| base_notebook["cells"].append({ | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": message["content"] | |
| }) | |
| else: | |
| raise ValueError(message) | |
| return base_notebook, code_cell_counter | |
| def execute_code(sbx, code): | |
| execution = sbx.run_code(code, on_stdout=lambda data: print('stdout:', data)) | |
| output = "" | |
| if len(execution.logs.stdout) > 0: | |
| output += "\n".join(execution.logs.stdout) | |
| if len(execution.logs.stderr) > 0: | |
| output += "\n".join(execution.logs.stderr) | |
| if execution.error is not None: | |
| output += execution.error.traceback | |
| return output, execution | |
| def parse_exec_result_llm(execution): | |
| output = "" | |
| if len(execution.logs.stdout) > 0: | |
| output += "\n".join(execution.logs.stdout) | |
| if len(execution.logs.stderr) > 0: | |
| output += "\n".join(execution.logs.stderr) | |
| if execution.error is not None: | |
| output += execution.error.traceback | |
| return output | |
| def update_notebook_display(notebook_data): | |
| notebook = nbformat.from_dict(notebook_data) | |
| notebook_body, _ = html_exporter.from_notebook_node(notebook) | |
| notebook_body = notebook_body.replace(bad_html_bad, "") | |
| return notebook_body | |
| def run_interactive_notebook(client, model, tokenizer, messages, sbx, max_new_tokens=512): | |
| notebook_data, code_cell_counter = create_base_notebook(messages) | |
| turns = 0 | |
| #code_cell_counter = 0 | |
| while turns <= MAX_TURNS: | |
| turns += 1 | |
| input_tokens = tokenizer.apply_chat_template( | |
| messages, | |
| chat_template=llama_template, | |
| builtin_tools=["code_interpreter"], | |
| add_generation_prompt=True | |
| ) | |
| model_input = tokenizer.decode(input_tokens) | |
| print(f"Model input:\n{model_input}\n{'='*80}") | |
| response_stream = client.text_generation( | |
| model=model, | |
| prompt=model_input, | |
| details=True, | |
| stream=True, | |
| do_sample=True, | |
| repetition_penalty=1.1, | |
| temperature=0.8, | |
| max_new_tokens=max_new_tokens, | |
| ) | |
| assistant_response = "" | |
| tokens = [] | |
| code_cell = False | |
| for i, chunk in enumerate(response_stream): | |
| if not chunk.token.special: | |
| content = chunk.token.text | |
| else: | |
| content = "" | |
| tokens.append(chunk.token.text) | |
| assistant_response += content | |
| if len(tokens)==1: | |
| create_cell=True | |
| code_cell = "<|python_tag|>" in tokens[0] | |
| if code_cell: | |
| code_cell_counter +=1 | |
| else: | |
| create_cell = False | |
| # Update notebook in real-time | |
| if create_cell: | |
| if "<|python_tag|>" in tokens[0]: | |
| notebook_data["cells"].append({ | |
| "cell_type": "code", | |
| "execution_count": None, | |
| "metadata": {}, | |
| "source": assistant_response, | |
| "outputs": [] | |
| }) | |
| else: | |
| notebook_data["cells"].append({ | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": assistant_response | |
| }) | |
| else: | |
| notebook_data["cells"][-1]["source"] = assistant_response | |
| if i%16 == 0: | |
| yield update_notebook_display(notebook_data), notebook_data, messages | |
| yield update_notebook_display(notebook_data), notebook_data, messages | |
| # Handle code execution | |
| if code_cell: | |
| notebook_data["cells"][-1]["execution_count"] = code_cell_counter | |
| exec_result, execution = execute_code(sbx, assistant_response) | |
| messages.append({ | |
| "role": "assistant", | |
| "content": assistant_response, | |
| "tool_calls": [{ | |
| "type": "function", | |
| "function": { | |
| "name": "code_interpreter", | |
| "arguments": {"code": assistant_response} | |
| } | |
| }] | |
| }) | |
| messages.append({"role": "ipython", "content": parse_exec_result_llm(execution), "nbformat": parse_exec_result_nb(execution)}) | |
| # Update the last code cell with execution results | |
| notebook_data["cells"][-1]["outputs"] = parse_exec_result_nb(execution) | |
| update_notebook_display(notebook_data) | |
| else: | |
| messages.append({"role": "assistant", "content": assistant_response}) | |
| if tokens[-1] == "<|eot_id|>": | |
| break | |
| yield update_notebook_display(notebook_data), notebook_data, messages |