# app.py import os import gradio as gr import torch import requests from transformers import pipeline, AutoModelForTokenClassification, AutoTokenizer from monai.networks.nets import DenseNet121 import torchxrayvision as xrv # Configuration DEEPSEEK_API_URL = "https://api.deepseek.com/v1/chat/completions" DEEPSEEK_API_KEY = os.getenv("DEEPSEEK_API_KEY") # Set in Hugging Face secrets DISCLAIMER = """
⚠️ WARNING: This is a prototype demonstration only. NOT ACTUAL MEDICAL ADVICE. DO NOT USE FOR REAL HEALTH DECISIONS. CONSULT LICENSED PROFESSIONALS.
""" class MedicalAssistant: def __init__(self): # Medical imaging models self.medical_models = self._init_imaging_models() # Clinical text processing self.prescription_parser = pipeline( "token-classification", model="obi/deid_bert_i2b2", tokenizer="obi/deid_bert_i2b2" ) # Safety systems self.safety_filter = pipeline( "text-classification", model="Hate-speech-CNERG/dehatebert-mono-english" ) def _init_imaging_models(self): """Initialize medical imaging models""" return { "xray": xrv.models.DenseNet(weights="densenet121-res224-all"), "ct": DenseNet121(spatial_dims=3, in_channels=1, out_channels=14), "histo": torch.hub.load('pytorch/vision', 'resnet50', pretrained=True) } def query_deepseek(self, prompt: str): """Query DeepSeek medical research API""" headers = { "Content-Type": "application/json", "Authorization": f"Bearer {DEEPSEEK_API_KEY}" } payload = { "model": "deepseek-medical-1.0", "messages": [{ "role": "user", "content": f"MEDICAL PROMPT: {prompt}\nRespond with latest research-supported information. Cite sources." }], "temperature": 0.2, "max_tokens": 500 } try: response = requests.post(DEEPSEEK_API_URL, json=payload, headers=headers) response.raise_for_status() return response.json()['choices'][0]['message']['content'] except Exception as e: return f"API Error: {str(e)}" def analyze_image(self, image_path: str, modality: str): """Medical image analysis""" try: img = self._preprocess_image(image_path, modality) if modality == "xray": output = self.medical_models["xray"](img) return xrv.datasets.default_pathologies[torch.argmax(output)] elif modality == "ct": output = self.medical_models["ct"](img) return "CT analysis placeholder" elif modality == "histo": output = self.medical_models["histo"](img) return "Histopathology analysis placeholder" except Exception as e: return f"Image analysis error: {str(e)}" def parse_prescription(self, text: str): """Clinical text parsing""" entities = self.prescription_parser(text) return { "medications": [ent for ent in entities if ent['entity'] == 'MEDICATION'], "dosage": [ent for ent in entities if ent['entity'] == 'DOSAGE'] } def generate_response(self, query: str, context: dict): """Generate safe, research-backed response""" # Construct enhanced prompt research_prompt = f""" Medical Query: {query} Context: - Image Findings: {context.get('image_analysis', 'N/A')} - Prescription Data: {context.get('prescription', 'N/A')} Requirements: 1. Provide evidence-based medical information 2. Cite recent research (post-2020 when possible) 3. Include safety considerations 4. Note confidence level """ # Get DeepSeek research response raw_response = self.query_deepseek(research_prompt) # Apply safety filters if self._is_unsafe(raw_response): return "I cannot provide advice on this matter. Please consult a healthcare professional." return self._add_disclaimer(raw_response) def _is_unsafe(self, text: str): """Content safety check""" return self.safety_filter(text)[0]['label'] == 'HATE' def _add_disclaimer(self, text: str): """Add legal disclaimer to response""" return f"{text}\n\n---\n⚠️ This information is for research purposes only. Not medical advice." def _preprocess_image(self, image_path: str, modality: str): """Image preprocessing placeholder""" return torch.rand((1, 224, 224)) # Initialize system assistant = MedicalAssistant() def process_input(query, image, prescription): context = {} if image is not None: context["image_analysis"] = assistant.analyze_image(image, "xray") if prescription: context["prescription"] = assistant.parse_prescription(prescription) return assistant.generate_response(query, context) # Gradio interface interface = gr.Interface( fn=process_input, inputs=[ gr.Textbox(label="Medical Query", placeholder="Enter your medical question..."), gr.Image(label="Medical Imaging", type="filepath"), gr.Textbox(label="Prescription Text") ], outputs=gr.Textbox(label="Research-Backed Response"), title="AI Medical Research Assistant", description=DISCLAIMER, allow_flagging="never" ) interface.launch() make a requirements and readme file for this code for huggins face