import pandas as pd from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics.pairwise import cosine_similarity import gradio as gr class BookRecommender: def __init__(self): self.df = None self.similarity_matrix = None def load_data(self, filepath): try: if filepath.endswith('.csv'): df = pd.read_csv(filepath) elif filepath.endswith(('.xls', '.xlsx')): df = pd.read_excel(filepath) else: raise ValueError("Unsupported file format. Please provide a CSV or Excel file.") return df except FileNotFoundError: raise FileNotFoundError(f"File not found at {filepath}") except ValueError as e: raise ValueError(f"Error loading data: {e}") except Exception as e: raise Exception(f"Error loading data: {e}") def preprocess_data(self, df, summary_column='summary', title_column='title'): if df[summary_column].isnull().any(): df[summary_column] = df[summary_column].fillna('') print("Handled missing values in summary column.") if df[title_column].isnull().any(): df[title_column] = df[title_column].fillna('') print("Handled missing values in title column.") df = df.drop_duplicates(subset=[title_column, summary_column], keep='first') print("Removed duplicate rows.") df = df[~(df[title_column] == '') | (df[summary_column] == '')] print("Removed rows with blank title and summary.") return df def create_tfidf_matrix(self, df, summary_column='summary'): tfidf = TfidfVectorizer(stop_words='english') tfidf_matrix = tfidf.fit_transform(df[summary_column]) return tfidf_matrix, tfidf def calculate_similarity(self, tfidf_matrix): similarity_matrix = cosine_similarity(tfidf_matrix) return similarity_matrix def recommend_books(self, book_title): try: book_index = self.df[self.df['title'] == book_title].index[0] except IndexError: return "Book title not found." except Exception as e: return f"An error occurred: {e}" similar_books_indices = self.similarity_matrix[book_index].argsort()[::-1][1:6] # Fixed top_n to 5 recommended_books = self.df['title'].iloc[similar_books_indices].tolist() return recommended_books def create_interface(self): def upload_and_process(file_obj): if file_obj is None: return "Please upload a file first.", None filepath = file_obj.name try: self.df = self.load_data(filepath) self.df = self.preprocess_data(self.df) tfidf_matrix, _ = self.create_tfidf_matrix(self.df) self.similarity_matrix = self.calculate_similarity(tfidf_matrix) return "File uploaded and processed successfully!", gr.update(interactive=True) except Exception as e: return f"Error: {e}", None def recommend_book_interface(book_title): if self.df is None or self.similarity_matrix is None: return "Please upload and process a file first." recommendations = self.recommend_books(book_title) formatted_recommendations = [[rec] for rec in recommendations] return formatted_recommendations with gr.Blocks() as iface: file_output = gr.File(label="Upload CSV or Excel file", file_types=[".csv", ".xls", ".xlsx"]) process_button = gr.Button("Process File") status_text = gr.Textbox(label="Status") text_input = gr.Textbox(lines=1, placeholder="Enter book title", interactive=False) output_list = gr.List(label="Recommended Books") process_button.click(upload_and_process, inputs=file_output, outputs=[status_text, text_input]) text_input.change(recommend_book_interface, inputs=text_input, outputs=output_list) return iface # Correct indentation here if __name__ == '__main__': recommender = BookRecommender() interface = recommender.create_interface() interface.launch()