Spaces:
Configuration error
Configuration error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
3 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
4 |
+
import gradio as gr
|
5 |
+
|
6 |
+
class BookRecommender:
|
7 |
+
def __init__(self):
|
8 |
+
self.df = None
|
9 |
+
self.similarity_matrix = None
|
10 |
+
|
11 |
+
def load_data(self, filepath):
|
12 |
+
try:
|
13 |
+
if filepath.endswith('.csv'):
|
14 |
+
df = pd.read_csv(filepath)
|
15 |
+
elif filepath.endswith(('.xls', '.xlsx')):
|
16 |
+
df = pd.read_excel(filepath)
|
17 |
+
else:
|
18 |
+
raise ValueError("Unsupported file format. Please provide a CSV or Excel file.")
|
19 |
+
return df
|
20 |
+
except FileNotFoundError:
|
21 |
+
raise FileNotFoundError(f"File not found at {filepath}")
|
22 |
+
except ValueError as e:
|
23 |
+
raise ValueError(f"Error loading data: {e}")
|
24 |
+
except Exception as e:
|
25 |
+
raise Exception(f"Error loading data: {e}")
|
26 |
+
|
27 |
+
def preprocess_data(self, df, summary_column='summary', title_column='title'):
|
28 |
+
if df[summary_column].isnull().any():
|
29 |
+
df[summary_column] = df[summary_column].fillna('')
|
30 |
+
print("Handled missing values in summary column.")
|
31 |
+
|
32 |
+
if df[title_column].isnull().any():
|
33 |
+
df[title_column] = df[title_column].fillna('')
|
34 |
+
print("Handled missing values in title column.")
|
35 |
+
|
36 |
+
df = df.drop_duplicates(subset=[title_column, summary_column], keep='first')
|
37 |
+
print("Removed duplicate rows.")
|
38 |
+
|
39 |
+
df = df[~(df[title_column] == '') | (df[summary_column] == '')]
|
40 |
+
print("Removed rows with blank title and summary.")
|
41 |
+
|
42 |
+
return df
|
43 |
+
|
44 |
+
def create_tfidf_matrix(self, df, summary_column='summary'):
|
45 |
+
tfidf = TfidfVectorizer(stop_words='english')
|
46 |
+
tfidf_matrix = tfidf.fit_transform(df[summary_column])
|
47 |
+
return tfidf_matrix, tfidf
|
48 |
+
|
49 |
+
def calculate_similarity(self, tfidf_matrix):
|
50 |
+
similarity_matrix = cosine_similarity(tfidf_matrix)
|
51 |
+
return similarity_matrix
|
52 |
+
|
53 |
+
def recommend_books(self, book_title):
|
54 |
+
try:
|
55 |
+
book_index = self.df[self.df['title'] == book_title].index[0]
|
56 |
+
except IndexError:
|
57 |
+
return "Book title not found."
|
58 |
+
except Exception as e:
|
59 |
+
return f"An error occurred: {e}"
|
60 |
+
|
61 |
+
similar_books_indices = self.similarity_matrix[book_index].argsort()[::-1][1:6] # Fixed top_n to 5
|
62 |
+
recommended_books = self.df['title'].iloc[similar_books_indices].tolist()
|
63 |
+
return recommended_books
|
64 |
+
|
65 |
+
def create_interface(self):
|
66 |
+
def upload_and_process(file_obj):
|
67 |
+
if file_obj is None:
|
68 |
+
return "Please upload a file first.", None
|
69 |
+
filepath = file_obj.name
|
70 |
+
try:
|
71 |
+
self.df = self.load_data(filepath)
|
72 |
+
self.df = self.preprocess_data(self.df)
|
73 |
+
tfidf_matrix, _ = self.create_tfidf_matrix(self.df)
|
74 |
+
self.similarity_matrix = self.calculate_similarity(tfidf_matrix)
|
75 |
+
return "File uploaded and processed successfully!", gr.update(interactive=True)
|
76 |
+
except Exception as e:
|
77 |
+
return f"Error: {e}", None
|
78 |
+
|
79 |
+
def recommend_book_interface(book_title):
|
80 |
+
if self.df is None or self.similarity_matrix is None:
|
81 |
+
return "Please upload and process a file first."
|
82 |
+
|
83 |
+
recommendations = self.recommend_books(book_title)
|
84 |
+
formatted_recommendations = [[rec] for rec in recommendations]
|
85 |
+
return formatted_recommendations
|
86 |
+
|
87 |
+
with gr.Blocks() as iface:
|
88 |
+
file_output = gr.File(label="Upload CSV or Excel file", file_types=[".csv", ".xls", ".xlsx"])
|
89 |
+
process_button = gr.Button("Process File")
|
90 |
+
status_text = gr.Textbox(label="Status")
|
91 |
+
text_input = gr.Textbox(lines=1, placeholder="Enter book title", interactive=False)
|
92 |
+
output_list = gr.List(label="Recommended Books")
|
93 |
+
|
94 |
+
process_button.click(upload_and_process, inputs=file_output, outputs=[status_text, text_input])
|
95 |
+
text_input.change(recommend_book_interface, inputs=text_input, outputs=output_list)
|
96 |
+
|
97 |
+
return iface # Correct indentation here
|
98 |
+
|
99 |
+
if __name__ == '__main__':
|
100 |
+
recommender = BookRecommender()
|
101 |
+
interface = recommender.create_interface()
|
102 |
+
interface.launch()
|