Spaces:
Runtime error
Runtime error
| import json | |
| import os | |
| import shutil | |
| import requests | |
| import spaces | |
| import torch | |
| import gradio as gr | |
| from huggingface_hub import Repository | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| from peft import PeftModel | |
| from share_btn import community_icon_html, loading_icon_html, share_js, share_btn_css | |
| device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
| HF_TOKEN = os.environ.get("HF_TOKEN", None) | |
| CHECKPOINT_URL = "Salesforce/codegen-350M-mono" | |
| SQLMODEL_PREFIX_URL = "luna-code/sqlmodel-codegen-350M-mono-prefix" | |
| SFEPY_PREFIX_URL = "luna-code/sfepy-codegen-350M-mono-prefix" | |
| MEGENGINE_PREFIX_URL = "luna-code/megengine-codegen-350M-mono-prefix" | |
| MAIN_EVO_PREFIX_URL = "luna-code/codegen-350M-mono-evo-prefix" | |
| SQLMODEL_FFT_URL = "luna-code/sqlmodel-codegen-350M-mono-fft" | |
| SFEPY_FFT_URL = "luna-code/sfepy-codegen-350M-mono-fft" | |
| MEGENGINE_FFT_URL = "luna-code/megengine-codegen-350M-mono-fft" | |
| MAIN_EVO_FFT_URL = "luna-code/codegen-350M-mono-evo-fft" | |
| MAIN_FD_FFT_URL = "luna-code/codegen-350M-mono-fd-fft" | |
| LANGCHAIN_PREFIX_URL = "luna-code/langchain-codegen-350M-mono-prefix" | |
| LLAMAINDEX_PREFIX_URL = "luna-code/llamaindex-codegen-350M-mono-prefix" | |
| DSPY_PREFIX_URL = "luna-code/dspy-codegen-350M-mono-prefix" | |
| CS_EVO_PREFIX_URL = "luna-code/cs-codegen-350M-mono-evo-prefix" | |
| tokenizer = AutoTokenizer.from_pretrained(CHECKPOINT_URL) | |
| basemodel = AutoModelForCausalLM.from_pretrained(CHECKPOINT_URL) | |
| sql_prefix = PeftModel.from_pretrained(basemodel, SQLMODEL_PREFIX_URL) | |
| sfepy_prefix = PeftModel.from_pretrained(basemodel, SFEPY_PREFIX_URL) | |
| megengine_prefix = PeftModel.from_pretrained(basemodel, MEGENGINE_PREFIX_URL) | |
| main_evo_prefix = PeftModel.from_pretrained(basemodel, MAIN_EVO_PREFIX_URL) | |
| sqlmodel_fft = AutoModelForCausalLM.from_pretrained(SQLMODEL_FFT_URL) | |
| sfepy_fft = AutoModelForCausalLM.from_pretrained(SFEPY_FFT_URL) | |
| megengine_fft = AutoModelForCausalLM.from_pretrained(MEGENGINE_FFT_URL) | |
| main_evo_fft = AutoModelForCausalLM.from_pretrained(MAIN_EVO_FFT_URL) | |
| main_fd_fft = AutoModelForCausalLM.from_pretrained(MAIN_FD_FFT_URL) | |
| langchain_prefix = PeftModel.from_pretrained(basemodel, LANGCHAIN_PREFIX_URL) | |
| llamaindex_prefix = PeftModel.from_pretrained(basemodel, LLAMAINDEX_PREFIX_URL) | |
| dspy_prefix = PeftModel.from_pretrained(basemodel, DSPY_PREFIX_URL) | |
| cs_evo_prefix = PeftModel.from_pretrained(basemodel, CS_EVO_PREFIX_URL) | |
| # basemodel = "" | |
| # sql_prefix = "" | |
| # sfepy_prefix = "" | |
| # megengine_prefix = "" | |
| # main_evo_prefix = "" | |
| # sqlmodel_fft = "" | |
| # sfepy_fft = "" | |
| # megengine_fft = "" | |
| # main_evo_fft = "" | |
| # main_fd_fft = "" | |
| # langchain_prefix = "" | |
| # llamaindex_prefix = "" | |
| # dspy_prefix = "" | |
| # cs_evo_prefix = "" | |
| model_map = { | |
| "Base": basemodel, | |
| "SQLModel Prefix": sql_prefix, | |
| "SfePy Prefix": sfepy_prefix, | |
| "MegEngine Prefix": megengine_prefix, | |
| "Main Evo Prefix": main_evo_prefix, | |
| "SQLModel FFT": sqlmodel_fft, | |
| "SfePy FFT": sfepy_fft, | |
| "MegEngine FFT": megengine_fft, | |
| "Main Evo FFT": main_evo_fft, | |
| "Main FD FFT": main_fd_fft, | |
| "LangChain Prefix": langchain_prefix, | |
| "LlamaIndex Prefix": llamaindex_prefix, | |
| "DSpy Prefix": dspy_prefix, | |
| "CS Evo Prefix": cs_evo_prefix, | |
| } | |
| FIM_PREFIX = "<fim_prefix>" | |
| FIM_MIDDLE = "<fim_middle>" | |
| FIM_SUFFIX = "<fim_suffix>" | |
| FIM_INDICATOR = "<FILL_HERE>" | |
| FORMATS = """## Model Formats | |
| The model is pretrained on code and is formatted with special tokens in addition to the pure code data,\ | |
| such as prefixes specifying the source of the file or tokens separating code from a commit message.\ | |
| Use these templates to explore the model's capacities: | |
| ### 1. Prefixes 🏷️ | |
| For pure code files, use any combination of the following prefixes: | |
| ``` | |
| <reponame>REPONAME<filename>FILENAME<gh_stars>STARS\ncode<|endoftext|> | |
| ``` | |
| STARS can be one of: 0, 1-10, 10-100, 100-1000, 1000+ | |
| ### 2. Commits 💾 | |
| The commits data is formatted as follows: | |
| ``` | |
| <commit_before>code<commit_msg>text<commit_after>code<|endoftext|> | |
| ``` | |
| ### 3. Jupyter Notebooks 📓 | |
| The model is trained on Jupyter notebooks as Python scripts and structured formats like: | |
| ``` | |
| <start_jupyter><jupyter_text>text<jupyter_code>code<jupyter_output>output<jupyter_text> | |
| ``` | |
| ### 4. Issues 🐛 | |
| We also trained on GitHub issues using the following formatting: | |
| ``` | |
| <issue_start><issue_comment>text<issue_comment>...<issue_closed> | |
| ``` | |
| ### 5. Fill-in-the-middle 🧩 | |
| Fill in the middle requires rearranging the model inputs. The playground handles this for you - all you need is to specify where to fill: | |
| ``` | |
| code before<FILL_HERE>code after | |
| ``` | |
| """ | |
| theme = gr.themes.Monochrome( | |
| primary_hue="indigo", | |
| secondary_hue="blue", | |
| neutral_hue="slate", | |
| radius_size=gr.themes.sizes.radius_sm, | |
| font=[ | |
| gr.themes.GoogleFont("Open Sans"), | |
| "ui-sans-serif", | |
| "system-ui", | |
| "sans-serif", | |
| ], | |
| ) | |
| def stream(model, code, generate_kwargs): | |
| model.to(device) | |
| input_ids = tokenizer(code, return_tensors="pt").to("cuda") | |
| generated_ids = model.generate(**input_ids, **generate_kwargs) | |
| return tokenizer.decode(generated_ids[0][input_ids["input_ids"].shape[1]:], skip_special_tokens=True).strip() | |
| def generate( | |
| prompt, temperature=0.6, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0, library="LangChain", method="Prefix" | |
| ): | |
| temperature = float(temperature) | |
| if temperature < 1e-2: | |
| temperature = 1e-2 | |
| top_p = float(top_p) | |
| generate_kwargs = dict( | |
| temperature=temperature, | |
| max_new_tokens=max_new_tokens, | |
| top_p=top_p, | |
| repetition_penalty=repetition_penalty, | |
| do_sample=True, | |
| seed=42, | |
| ) | |
| if method == "Base": | |
| output = stream(basemodel, prompt, generate_kwargs) | |
| elif method == "Prefix": | |
| output = stream(model_map[library + " Prefix"], prompt, generate_kwargs) | |
| elif method == "Evo Prefix" and library in ["SQLModel", "SfePy", "MegEngine"]: | |
| output = stream(model_map["Main Evo Prefix"], prompt, generate_kwargs) | |
| elif method == "FFT" and library in ["SQLModel", "SfePy", "MegEngine"]: | |
| output = stream(model_map[library + " FFT"], prompt, generate_kwargs) | |
| elif method == "Evo FFT" and library in ["SQLModel", "SfePy", "MegEngine"]: | |
| output = stream(model_map["Main Evo FFT"], prompt, generate_kwargs) | |
| elif method == "Full Data FFT" and library in ["SQLModel", "SfePy", "MegEngine"]: | |
| output = stream(model_map["Main FD FFT"], prompt, generate_kwargs) | |
| else: | |
| output = "" | |
| return output | |
| examples = [ | |
| "X_train, y_train, X_test, y_test = train_test_split(X, y, test_size=0.1)\n\n# Train a logistic regression model, predict the labels on the test set and compute the accuracy score", | |
| "// Returns every other value in the array as a new array.\nfunction everyOther(arr) {", | |
| "Poor English: She no went to the market. Corrected English:", | |
| "def alternating(list1, list2):\n results = []\n for i in range(min(len(list1), len(list2))):\n results.append(list1[i])\n results.append(list2[i])\n if len(list1) > len(list2):\n <FILL_HERE>\n else:\n results.extend(list2[i+1:])\n return results", | |
| ] | |
| def process_example(args): | |
| for x in generate(args): | |
| pass | |
| return x | |
| css = ".generating {visibility: hidden}" | |
| monospace_css = """ | |
| #q-input textarea { | |
| font-family: monospace, 'Consolas', Courier, monospace; | |
| } | |
| """ | |
| css += share_btn_css + monospace_css + ".gradio-container {color: black}" | |
| description = """ | |
| <div style="text-align: center;"> | |
| <h1> 🌙 LUNA Models Playground</h1> | |
| </div> | |
| <div style="text-align: left;"> | |
| <p>This is a demo to generate text and code with unknown libraries. The supported based model is <a href="Salesforce/codegen-350M-mono" style='color: #e6b800;'>CodeGen-350M-mono</a></p> | |
| <p>The supported libraries are:</p> | |
| <ul> | |
| <li><a href="https://sqlmodel.tiangolo.com" style='color: #e6b800;'>SQLModel</a></li> | |
| <li><a href="https://sfepy.org" style='color: #e6b800;'>SfePy</a></li> | |
| <li><a href="https://megengine.org" style='color: #e6b800;'>MegEngine</a></li> | |
| <li><a href="https://www.langchain.com/" style='color: #e6b800;'>LangChain</a></li> | |
| <li><a href="https://www.llamaindex.ai/" style='color: #e6b800;'>LlamaIndex</a></li> | |
| <li><a href="https://dspy-docs.vercel.app/" style='color: #e6b800;'>DSpy</a></li> | |
| </ul> | |
| <p><b>Please note:</b> These models are not designed for instruction purposes.</p> | |
| </div> | |
| """ | |
| disclaimer = """⚠️<b>Any use or sharing of this demo constitues your acceptance of the BigCode [OpenRAIL-M](spaces/bigcode/bigcode-model-license-agreement) License Agreement and the use restrictions included within.</b>\ | |
| <br>**Intended Use**: this app and its [supporting model](bigcode) are provided for demonstration purposes; not to serve as replacement for human expertise. For more details on the model's limitations in terms of factuality and biases, see the [model card.](hf.co/bigcode)""" | |
| with gr.Blocks(theme=theme, analytics_enabled=False, css=css) as demo: | |
| with gr.Column(): | |
| gr.Markdown(description) | |
| with gr.Row(): | |
| library = gr.Dropdown( | |
| ["SQLModel", "SfePy", "MegEngine", "LangChain", "LlamaIndex", "DSpy"], | |
| value="LangChain", | |
| label="Library", | |
| info="Choose a library from the list", | |
| ) | |
| with gr.Row(): | |
| method = gr.Dropdown( | |
| ["Base", "Prefix", "Evo Prefix", "FFT", "Evo FFT", "Full Data FFT"], | |
| value="Prefix", | |
| label="Model", | |
| info="Choose an expert from the list", | |
| ) | |
| with gr.Row(): | |
| with gr.Column(): | |
| instruction = gr.Textbox( | |
| placeholder="Enter your code here", | |
| lines=5, | |
| label="Input", | |
| elem_id="q-input", | |
| ) | |
| submit = gr.Button("Generate", variant="primary") | |
| output = gr.Code(elem_id="q-output", lines=30, label="Output") | |
| with gr.Row(): | |
| with gr.Column(): | |
| with gr.Accordion("Advanced settings", open=False): | |
| with gr.Row(): | |
| column_1, column_2 = gr.Column(), gr.Column() | |
| with column_1: | |
| temperature = gr.Slider( | |
| label="Temperature", | |
| value=0.2, | |
| minimum=0.0, | |
| maximum=1.0, | |
| step=0.05, | |
| interactive=True, | |
| info="Higher values produce more diverse outputs", | |
| ) | |
| max_new_tokens = gr.Slider( | |
| label="Max new tokens", | |
| value=256, | |
| minimum=0, | |
| maximum=8192, | |
| step=64, | |
| interactive=True, | |
| info="The maximum numbers of new tokens", | |
| ) | |
| with column_2: | |
| top_p = gr.Slider( | |
| label="Top-p (nucleus sampling)", | |
| value=0.90, | |
| minimum=0.0, | |
| maximum=1, | |
| step=0.05, | |
| interactive=True, | |
| info="Higher values sample more low-probability tokens", | |
| ) | |
| repetition_penalty = gr.Slider( | |
| label="Repetition penalty", | |
| value=1.2, | |
| minimum=1.0, | |
| maximum=2.0, | |
| step=0.05, | |
| interactive=True, | |
| info="Penalize repeated tokens", | |
| ) | |
| gr.Markdown(disclaimer) | |
| with gr.Group(elem_id="share-btn-container"): | |
| community_icon = gr.HTML(community_icon_html, visible=True) | |
| loading_icon = gr.HTML(loading_icon_html, visible=True) | |
| share_button = gr.Button( | |
| "Share to community", elem_id="share-btn", visible=True | |
| ) | |
| gr.Examples( | |
| examples=examples, | |
| inputs=[instruction], | |
| cache_examples=False, | |
| fn=process_example, | |
| outputs=[output], | |
| ) | |
| gr.Markdown(FORMATS) | |
| submit.click( | |
| generate, | |
| inputs=[instruction, temperature, max_new_tokens, top_p, repetition_penalty, library, method], | |
| outputs=[output] | |
| ) | |
| share_button.click(None, [], []) | |
| demo.queue().launch(debug=True) |