Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import T5ForConditionalGeneration,T5Tokenizer
|
2 |
+
from transformers import AutoModelWithLMHead, AutoTokenizer
|
3 |
+
from transformers import pipeline
|
4 |
+
import streamlit as st
|
5 |
+
|
6 |
+
model = T5ForConditionalGeneration.from_pretrained("Michau/t5-base-en-generate-headline")
|
7 |
+
tokenizer = T5Tokenizer.from_pretrained("Michau/t5-base-en-generate-headline")
|
8 |
+
|
9 |
+
mrm_tokenizer = AutoTokenizer.from_pretrained("mrm8488/t5-base-finetuned-summarize-news")
|
10 |
+
mrm_model = AutoModelWithLMHead.from_pretrained("mrm8488/t5-base-finetuned-summarize-news")
|
11 |
+
|
12 |
+
|
13 |
+
def generate_title(article):
|
14 |
+
text = "headline: " + article
|
15 |
+
encoding = tokenizer.encode_plus(text, return_tensors = "pt", max_length=2048, truncation=True)
|
16 |
+
input_ids = encoding["input_ids"]
|
17 |
+
attention_masks = encoding["attention_mask"]
|
18 |
+
|
19 |
+
beam_outputs = model.generate(
|
20 |
+
input_ids = input_ids,
|
21 |
+
attention_mask = attention_masks,
|
22 |
+
max_length = 50,
|
23 |
+
num_beams = 3,
|
24 |
+
do_sample = True,
|
25 |
+
top_k=10,
|
26 |
+
early_stopping = False,
|
27 |
+
)
|
28 |
+
|
29 |
+
return tokenizer.decode(beam_outputs[0])
|
30 |
+
|
31 |
+
# def generate_summary(article):
|
32 |
+
# input_ids = mrm_tokenizer.encode(article, return_tensors="pt", add_special_tokens=True)
|
33 |
+
|
34 |
+
# generated_ids = mrm_model.generate(input_ids=input_ids, num_beams=3, max_length=200, repetition_penalty=2.5, length_penalty=1.0, early_stopping=False, truncation=True)
|
35 |
+
|
36 |
+
# preds = [mrm_tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=True) for g in generated_ids]
|
37 |
+
|
38 |
+
# return preds[0]
|
39 |
+
def generate_summary(article):
|
40 |
+
article = article[:1024]
|
41 |
+
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
42 |
+
return summarizer(article, max_length=130, min_length=30, do_sample=False)
|
43 |
+
def main():
|
44 |
+
st.title("Text Summarization")
|
45 |
+
text = st.text_area("Enter your text here:", "")
|
46 |
+
|
47 |
+
if st.button("Generate Summary"):
|
48 |
+
if text.strip() == "":
|
49 |
+
st.error("Please enter some text.")
|
50 |
+
else:
|
51 |
+
title = generate_title(text)
|
52 |
+
summary = generate_summary(text)
|
53 |
+
# summary = summary[0]['summary_text']
|
54 |
+
|
55 |
+
st.subheader("Generated Title:")
|
56 |
+
st.write(title.replace('<pad>', '').replace('</s>', ''))
|
57 |
+
|
58 |
+
st.subheader("Generated Description:")
|
59 |
+
|
60 |
+
# st.write(summary.replace('<pad>', '').replace('</s>', ''))
|
61 |
+
st.write(summary[0]['summary_text'])
|
62 |
+
|
63 |
+
|
64 |
+
if __name__ == "__main__":
|
65 |
+
main()
|