llm-leaderboard / streamlit_app.py
Ludwig Stumpp
Fix app
1c71762
import io
import re
from collections.abc import Iterable
import pandas as pd
import streamlit as st
from pandas.api.types import (is_bool_dtype, is_datetime64_any_dtype,
is_numeric_dtype)
GITHUB_URL = "https://github.com/LudwigStumpp/llm-leaderboard"
NON_BENCHMARK_COLS = ["Open?", "Publisher"]
def extract_table_and_format_from_markdown_text(markdown_table: str) -> pd.DataFrame:
"""Extracts a table from a markdown text and formats it as a pandas DataFrame.
Args:
text (str): Markdown text containing a table.
Returns:
pd.DataFrame: Table as pandas DataFrame.
"""
df = (
pd.read_table(io.StringIO(markdown_table), sep="|", header=0, index_col=1)
.dropna(axis=1, how="all") # drop empty columns
.iloc[
1:
] # drop first row which is the "----" separator of the original markdown table
.sort_index(ascending=True)
.apply(lambda x: x.str.strip() if x.dtype == "object" else x)
.replace("", float("NaN"))
.apply(pd.to_numeric, errors="ignore")
)
# remove whitespace from column names and index
df.columns = df.columns.str.strip()
df.index = df.index.str.strip()
df.index.name = df.index.name.strip()
return df
def extract_markdown_table_from_multiline(
multiline: str, table_headline: str, next_headline_start: str = "#"
) -> str:
"""Extracts the markdown table from a multiline string.
Args:
multiline (str): content of README.md file.
table_headline (str): Headline of the table in the README.md file.
next_headline_start (str, optional): Start of the next headline. Defaults to "#".
Returns:
str: Markdown table.
Raises:
ValueError: If the table could not be found.
"""
# extract everything between the table headline and the next headline
table = []
start = False
for line in multiline.split("\n"):
if line.startswith(table_headline):
start = True
elif line.startswith(next_headline_start):
start = False
elif start:
table.append(line + "\n")
if len(table) == 0:
raise ValueError(f"Could not find table with headline '{table_headline}'")
return "".join(table)
def remove_markdown_links(text: str) -> str:
"""Modifies a markdown text to remove all markdown links.
Example: [DISPLAY](LINK) to DISPLAY
First find all markdown links with regex.
Then replace them with: $1
Args:
text (str): Markdown text containing markdown links
Returns:
str: Markdown text without markdown links.
"""
# find all markdown links
markdown_links = re.findall(r"\[([^\]]+)\]\(([^)]+)\)", text)
# remove link keep display text
for display, link in markdown_links:
text = text.replace(f"[{display}]({link})", display)
return text
def filter_dataframe_by_row_and_columns(
df: pd.DataFrame, ignore_columns: list[str] | None = None
) -> pd.DataFrame:
"""
Filter dataframe by the rows and columns to display.
This does not select based on the values in the dataframe, but rather on the index and columns.
Modified from https://blog.streamlit.io/auto-generate-a-dataframe-filtering-ui-in-streamlit-with-filter_dataframe/
Args:
df (pd.DataFrame): Original dataframe
ignore_columns (list[str], optional): Columns to ignore. Defaults to None.
Returns:
pd.DataFrame: Filtered dataframe
"""
df = df.copy()
if ignore_columns is None:
ignore_columns = []
modification_container = st.container()
with modification_container:
to_filter_index = st.multiselect("Filter by model:", sorted(df.index))
if to_filter_index:
df = pd.DataFrame(df.loc[to_filter_index])
to_filter_columns = st.multiselect(
"Filter by benchmark:",
sorted([c for c in df.columns if c not in ignore_columns]),
)
if to_filter_columns:
df = pd.DataFrame(df[ignore_columns + to_filter_columns])
return df
def filter_dataframe_by_column_values(df: pd.DataFrame) -> pd.DataFrame:
"""
Filter dataframe by the values in the dataframe.
Modified from https://blog.streamlit.io/auto-generate-a-dataframe-filtering-ui-in-streamlit-with-filter_dataframe/
Args:
df (pd.DataFrame): Original dataframe
Returns:
pd.DataFrame: Filtered dataframe
"""
df = df.copy()
modification_container = st.container()
with modification_container:
to_filter_columns = st.multiselect("Filter results on:", df.columns)
left, right = st.columns((1, 20))
for column in to_filter_columns:
if is_bool_dtype(df[column]):
user_bool_input = right.checkbox(f"{column}", value=True)
df = df[df[column] == user_bool_input]
elif is_numeric_dtype(df[column]):
_min = float(df[column].min())
_max = float(df[column].max())
if (_min != _max) and pd.notna(_min) and pd.notna(_max):
step = 0.01
user_num_input = right.slider(
f"Values for {column}:",
min_value=round(_min - step, 2),
max_value=round(_max + step, 2),
value=(_min, _max),
step=step,
)
df = df[df[column].between(*user_num_input)]
elif is_datetime64_any_dtype(df[column]):
user_date_input = right.date_input(
f"Values for {column}:",
value=(
df[column].min(),
df[column].max(),
),
)
if isinstance(user_date_input, Iterable) and len(user_date_input) == 2:
user_date_input_datetime = tuple(
map(pd.to_datetime, user_date_input)
)
start_date, end_date = user_date_input_datetime
df = df.loc[df[column].between(start_date, end_date)]
else:
selected_values = right.multiselect(
f"Values for {column}:",
sorted(df[column].unique()),
)
if selected_values:
df = df[df[column].isin(selected_values)]
return df
def setup_basic():
title = "πŸ† LLM-Leaderboard"
st.set_page_config(
page_title=title,
page_icon="πŸ†",
layout="wide",
)
st.title(title)
st.markdown(
"A joint community effort to create one central leaderboard for LLMs."
f" Visit [llm-leaderboard]({GITHUB_URL}) to contribute. \n"
'We refer to a model being "open" if it can be locally deployed and used for commercial purposes.'
)
def setup_leaderboard(readme: str):
leaderboard_table = extract_markdown_table_from_multiline(
readme, table_headline="## Leaderboard"
)
leaderboard_table = remove_markdown_links(leaderboard_table)
df_leaderboard = extract_table_and_format_from_markdown_text(leaderboard_table)
df_leaderboard["Open?"] = (
df_leaderboard["Open?"].map({"yes": 1, "no": 0}).astype(bool)
)
st.markdown("## Leaderboard")
modify = st.checkbox("Add filters")
clear_empty_entries = st.checkbox("Clear empty entries", value=True)
if modify:
df_leaderboard = filter_dataframe_by_row_and_columns(
df_leaderboard, ignore_columns=NON_BENCHMARK_COLS
)
df_leaderboard = filter_dataframe_by_column_values(df_leaderboard)
if clear_empty_entries:
df_leaderboard = df_leaderboard.dropna(axis=1, how="all")
benchmark_columns = [
c for c in df_leaderboard.columns if df_leaderboard[c].dtype == float
]
rows_wo_any_benchmark = df_leaderboard[benchmark_columns].isna().all(axis=1)
df_leaderboard = df_leaderboard[~rows_wo_any_benchmark]
st.dataframe(df_leaderboard)
st.download_button(
"Download current selection as .html",
df_leaderboard.to_html().encode("utf-8"),
"leaderboard.html",
"text/html",
key="download-html",
)
st.download_button(
"Download current selection as .csv",
df_leaderboard.to_csv().encode("utf-8"),
"leaderboard.csv",
"text/csv",
key="download-csv",
)
def setup_benchmarks(readme: str):
benchmarks_table = extract_markdown_table_from_multiline(
readme, table_headline="## Benchmarks"
)
df_benchmarks = extract_table_and_format_from_markdown_text(benchmarks_table)
st.markdown("## Covered Benchmarks")
selected_benchmark = st.selectbox(
"Select a benchmark to learn more:", df_benchmarks.index.unique()
)
df_selected = df_benchmarks.loc[selected_benchmark]
text = [
f"Name: {selected_benchmark}",
]
for key in df_selected.keys():
text.append(f"{key}: {df_selected[key]} ")
st.markdown(" \n".join(text))
def setup_sources():
st.markdown("## Sources")
st.markdown(
"The results of this leaderboard are collected from the individual papers and published results of the model "
"authors. If you are interested in the sources of each individual reported model value, please visit the "
f"[llm-leaderboard]({GITHUB_URL}) repository."
)
st.markdown(
"""
Special thanks to the following pages:
- [MosaicML - Model benchmarks](https://www.mosaicml.com/blog/mpt-7b)
- [lmsys.org - Chatbot Arena benchmarks](https://lmsys.org/blog/2023-05-03-arena/)
- [Papers With Code](https://paperswithcode.com/)
- [Stanford HELM](https://crfm.stanford.edu/helm/latest/)
- [HF Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
"""
)
def setup_disclaimer():
st.markdown("## Disclaimer")
st.markdown(
"Above information may be wrong. If you want to use a published model for commercial use, please contact a "
"lawyer."
)
def setup_footer():
st.markdown(
"""
---
Made with ❀️ by the awesome open-source community from all over 🌍.
"""
)
def main():
setup_basic()
with open("README.md", "r") as f:
readme = f.read()
setup_leaderboard(readme)
setup_benchmarks(readme)
setup_sources()
setup_disclaimer()
setup_footer()
if __name__ == "__main__":
main()