Falcao Zane Vijay commited on
Commit
edbf119
·
1 Parent(s): c66a8d9

Readme update

Browse files
Files changed (2) hide show
  1. README.md +285 -4
  2. src/README.md +287 -1
README.md CHANGED
@@ -11,9 +11,290 @@ pinned: false
11
  short_description: h2h assignment
12
  ---
13
 
14
- # Welcome to Streamlit!
15
 
16
- Edit `/src/streamlit_app.py` to customize this app to your heart's desire. :heart:
17
 
18
- If you have any questions, checkout our [documentation](https://docs.streamlit.io) and [community
19
- forums](https://discuss.streamlit.io).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
  short_description: h2h assignment
12
  ---
13
 
14
+ # 📈 Complete Stock Trading & Prediction Platform
15
 
16
+ A sophisticated web-based stock trading platform that combines machine learning price predictions with rule-based trading strategies. Built with Streamlit, this platform offers comprehensive technical analysis, backtesting capabilities, and interactive visualizations for Indian stock markets.
17
 
18
+ ![Platform Demo](https://img.shields.io/badge/Platform-Streamlit-red)
19
+ ![Python](https://img.shields.io/badge/Python-3.8+-blue)
20
+ ![License](https://img.shields.io/badge/License-MIT-green)
21
+ ![Status](https://img.shields.io/badge/Status-Active-brightgreen)
22
+
23
+ ## 🌟 Features
24
+
25
+ ### 🔮 Price Prediction Engine
26
+ - **Machine Learning Model**: Logistic regression with 59+ technical features
27
+ - **Advanced Features**: Volatility ratios, momentum indicators, lag features
28
+ - **Confidence Analysis**: Prediction probability with visual confidence gauge
29
+ - **Technical Indicators**: RSI, MACD, SMA, EMA, Bollinger Bands
30
+
31
+ ### 📊 Trading Dashboard
32
+ - **Multiple Strategies**: SMA-based and EMA-based trading strategies
33
+ - **Comprehensive Backtesting**: Historical performance analysis with risk metrics
34
+ - **Risk Management**: Configurable stop-loss, take-profit, and position sizing
35
+ - **Interactive Visualizations**: Plotly-powered charts and analysis tools
36
+
37
+ ### 📈 Technical Analysis
38
+ - **50+ Indian Stocks**: Pre-configured NSE stock symbols
39
+ - **Real-time Data**: Yahoo Finance integration with reliable data fetching
40
+ - **Multiple Timeframes**: Customizable periods for technical indicators
41
+ - **Advanced Charts**: Candlestick patterns, volume analysis, drawdown charts
42
+
43
+ ## 🚀 Quick Start
44
+
45
+ ### Prerequisites
46
+ ```bash
47
+ Python 3.8+
48
+ pip package manager
49
+ ```
50
+
51
+ ### Installation
52
+
53
+ 1. **Clone the repository**
54
+ ```bash
55
+ git clone https://github.com/yourusername/stock-trading-platform.git
56
+ cd stock-trading-platform
57
+ ```
58
+
59
+ 2. **Install dependencies**
60
+ ```bash
61
+ pip install -r requirements.txt
62
+ ```
63
+
64
+ 3. **Set up the project structure**
65
+ ```bash
66
+ mkdir -p src/logs src/models
67
+ ```
68
+
69
+ 4. **Download or train the ML models**
70
+ ```bash
71
+ # Place your trained models in src/models/
72
+ # - logistic_regression_model.pkl
73
+ # - scaler.pkl
74
+ ```
75
+
76
+ 5. **Run the application**
77
+ ```bash
78
+ streamlit run app.py
79
+ ```
80
+
81
+ 6. **Access the platform**
82
+ ```
83
+ Open your browser and navigate to http://localhost:8501
84
+ ```
85
+
86
+ ## 📁 Project Structure
87
+
88
+ ```
89
+ stock-trading-platform/
90
+
91
+ ├── app.py # Main Streamlit application
92
+ ├── requirements.txt # Python dependencies
93
+ ├── README.md # Project documentation
94
+
95
+ ├── src/
96
+ │ ├── indicators/ # Technical indicator modules
97
+ │ │ ├── __init__.py
98
+ │ │ ├── rsi.py # RSI calculation
99
+ │ │ ├── sma.py # Simple Moving Average
100
+ │ │ ├── ema.py # Exponential Moving Average
101
+ │ │ ├── macd.py # MACD indicator
102
+ │ │ └── enhanced_features.py # Advanced feature engineering
103
+ │ │
104
+ │ ├── strategy/ # Trading strategy modules
105
+ │ │ ├── __init__.py
106
+ │ │ └── rule_based_strategy.py # SMA/EMA trading strategies
107
+ │ │
108
+ │ ├── utils/ # Utility modules
109
+ │ │ ├── __init__.py
110
+ │ │ ├── backtester.py # Backtesting engine
111
+ │ │ └── logger.py # Logging configuration
112
+ │ │
113
+ │ ├── models/ # ML models and scalers
114
+ │ │ ├── logistic_regression_model.pkl
115
+ │ │ └── scaler.pkl
116
+ │ │
117
+ │ └── logs/ # Application logs
118
+ │ └── trading_app.log
119
+
120
+ └── data/ # Data storage (optional)
121
+ └── processed/
122
+ ```
123
+
124
+ ## 🛠️ Dependencies
125
+
126
+ ### Core Libraries
127
+ ```python
128
+ streamlit>=1.28.0 # Web application framework
129
+ pandas>=1.5.0 # Data manipulation
130
+ numpy>=1.24.0 # Numerical computing
131
+ plotly>=5.15.0 # Interactive visualizations
132
+ yfinance>=0.2.18 # Stock data fetching
133
+ scikit-learn>=1.3.0 # Machine learning
134
+ ```
135
+
136
+ ### Additional Dependencies
137
+ ```python
138
+ curl-cffi>=0.5.10 # HTTP requests with browser impersonation
139
+ pickle>=4.0 # Model serialization
140
+ datetime # Date/time handling
141
+ warnings # Warning management
142
+ logging # Application logging
143
+ ```
144
+
145
+ ## 📊 Supported Stocks
146
+
147
+ The platform supports 50+ major Indian stocks including:
148
+
149
+ **Banking & Finance**
150
+ - HDFCBANK.NS, ICICIBANK.NS, AXISBANK.NS, KOTAKBANK.NS, SBIN.NS
151
+
152
+ **Technology**
153
+ - TCS.NS, INFY.NS, HCLTECH.NS, TECHM.NS, WIPRO.NS
154
+
155
+ **Energy & Materials**
156
+ - RELIANCE.NS, ONGC.NS, COALINDIA.NS, NTPC.NS, POWERGRID.NS
157
+
158
+ **Consumer Goods**
159
+ - HINDUNILVR.NS, ITC.NS, NESTLEIND.NS, TATACONSUM.NS, BRITANNIA.NS
160
+
161
+ **And many more...**
162
+
163
+ ## 🔧 Configuration
164
+
165
+ ### Technical Indicators
166
+ - **RSI Period**: 5-30 days (default: 14)
167
+ - **Short-term SMA/EMA**: 5-50 days (default: 20)
168
+ - **Long-term SMA/EMA**: 50-200 days (default: 50)
169
+
170
+ ### Trading Parameters
171
+ - **Initial Capital**: ₹10,000 - ₹10,00,000 (default: ₹1,00,000)
172
+ - **Transaction Cost**: 0.0% - 1.0% (default: 0.1%)
173
+ - **Stop Loss**: 0% - 20% (default: 5%)
174
+ - **Take Profit**: 0% - 50% (default: 15%)
175
+
176
+ ### Risk Management
177
+ - Position sizing based on available capital
178
+ - Automatic stop-loss and take-profit execution
179
+ - Transaction cost simulation
180
+ - Drawdown analysis and monitoring
181
+
182
+ ## 🎯 Usage Guide
183
+
184
+ ### 1. Price Prediction
185
+ 1. Select a stock from the dropdown menu
186
+ 2. Choose your date range and technical indicator periods
187
+ 3. View the ML model's next-day price prediction
188
+ 4. Analyze confidence levels and technical charts
189
+ 5. Export prediction data for further analysis
190
+
191
+ ### 2. Trading Dashboard
192
+ 1. Configure your trading strategy (SMA or EMA based)
193
+ 2. Set backtesting parameters and risk management rules
194
+ 3. Run the backtest and analyze performance metrics
195
+ 4. Compare strategy performance vs buy-and-hold
196
+ 5. Review detailed trade analysis and export results
197
+
198
+ ### 3. Technical Analysis
199
+ 1. Examine multiple technical indicators simultaneously
200
+ 2. Identify trading signals and market trends
201
+ 3. Analyze volume patterns and momentum indicators
202
+ 4. Use Bollinger Bands for volatility analysis
203
+ 5. Monitor drawdown and risk metrics
204
+
205
+ ## 📈 Model Performance
206
+
207
+ ### Machine Learning Metrics
208
+ - **Accuracy**: 55.0%
209
+ - **F1 Score**: 0.4839
210
+ - **AUC Score**: 0.5370
211
+ - **Average Precision**: 0.5300
212
+
213
+ ### Feature Engineering
214
+ - **Total Features**: 59 technical indicators
215
+ - **Feature Categories**: Price, Volume, Volatility, Momentum, Position
216
+ - **Data Processing**: StandardScaler normalization
217
+ - **Model Type**: Logistic Regression with regularization
218
+
219
+ ## 🔍 Advanced Features
220
+
221
+ ### Enhanced Technical Analysis
222
+ - **Volatility Features**: Multi-timeframe volatility ratios and rankings
223
+ - **Lag Features**: Historical price and indicator dependencies
224
+ - **Volume Analysis**: Volume-price relationships and momentum
225
+ - **Position Features**: Price position relative to historical ranges
226
+
227
+ ### Backtesting Engine
228
+ - **Performance Metrics**: Sharpe ratio, maximum drawdown, win rate
229
+ - **Trade Analysis**: Individual trade performance and statistics
230
+ - **Risk Assessment**: Drawdown analysis and volatility measures
231
+ - **Comparison Tools**: Strategy vs buy-and-hold performance
232
+
233
+ ### Interactive Visualizations
234
+ - **Real-time Charts**: Dynamic price action with technical overlays
235
+ - **Signal Visualization**: Buy/sell signals on price charts
236
+ - **Performance Tracking**: Portfolio value progression over time
237
+ - **Distribution Analysis**: Trade returns and risk metrics
238
+
239
+ ## 🚨 Disclaimer
240
+
241
+ **Important**: This platform is designed for educational and research purposes only. Stock market investments carry inherent risks, and past performance does not guarantee future results.
242
+
243
+ **Risk Warning**:
244
+ - Always conduct your own research before making investment decisions
245
+ - Consider consulting with a qualified financial advisor
246
+ - Never invest more than you can afford to lose
247
+ - Markets can be volatile and unpredictable
248
+
249
+ ## 🤝 Contributing
250
+
251
+ We welcome contributions to improve the platform! Here's how you can help:
252
+
253
+ ### Areas for Contribution
254
+ - **New Trading Strategies**: Implement additional algorithmic strategies
255
+ - **Enhanced ML Models**: Add new prediction models and features
256
+ - **UI/UX Improvements**: Enhance the user interface and experience
257
+ - **Performance Optimization**: Improve code efficiency and speed
258
+ - **Bug Fixes**: Report and fix issues in the codebase
259
+
260
+ ### Contribution Process
261
+ 1. Fork the repository
262
+ 2. Create a feature branch (`git checkout -b feature/amazing-feature`)
263
+ 3. Commit your changes (`git commit -m 'Add amazing feature'`)
264
+ 4. Push to the branch (`git push origin feature/amazing-feature`)
265
+ 5. Open a Pull Request
266
+
267
+ ## 📝 License
268
+
269
+ This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
270
+
271
+ ## 👨‍💻 Author
272
+
273
+ **Zane Vijay Falcao**
274
+ - Email: [email protected]
275
+ - LinkedIn: [Your LinkedIn Profile]
276
+ - GitHub: [Your GitHub Profile]
277
+
278
+ ## 🙏 Acknowledgments
279
+
280
+ - **Yahoo Finance** for providing reliable stock market data
281
+ - **Streamlit** for the excellent web application framework
282
+ - **Plotly** for interactive visualization capabilities
283
+ - **Scikit-learn** for machine learning tools and utilities
284
+
285
+ ## 📞 Support
286
+
287
+ If you encounter any issues or have questions:
288
+
289
+ 1. **Check the Documentation**: Review this README and code comments
290
+ 2. **Search Issues**: Look through existing GitHub issues
291
+ 3. **Create New Issue**: Submit a detailed bug report or feature request
292
+ 4. **Contact Developer**: Reach out via email for urgent matters
293
+
294
+ ---
295
+
296
+ ⭐ **Star this repository if you find it helpful!** ⭐
297
+
298
+ ---
299
+
300
+ *Last Updated: August 2025*
src/README.md CHANGED
@@ -1 +1,287 @@
1
- # Placeholder for README.md
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # 📈 Complete Stock Trading & Prediction Platform
2
+
3
+ A sophisticated web-based stock trading platform that combines machine learning price predictions with rule-based trading strategies. Built with Streamlit, this platform offers comprehensive technical analysis, backtesting capabilities, and interactive visualizations for Indian stock markets.
4
+
5
+ ![Platform Demo](https://img.shields.io/badge/Platform-Streamlit-red)
6
+ ![Python](https://img.shields.io/badge/Python-3.8+-blue)
7
+ ![License](https://img.shields.io/badge/License-MIT-green)
8
+ ![Status](https://img.shields.io/badge/Status-Active-brightgreen)
9
+
10
+ ## 🌟 Features
11
+
12
+ ### 🔮 Price Prediction Engine
13
+ - **Machine Learning Model**: Logistic regression with 59+ technical features
14
+ - **Advanced Features**: Volatility ratios, momentum indicators, lag features
15
+ - **Confidence Analysis**: Prediction probability with visual confidence gauge
16
+ - **Technical Indicators**: RSI, MACD, SMA, EMA, Bollinger Bands
17
+
18
+ ### 📊 Trading Dashboard
19
+ - **Multiple Strategies**: SMA-based and EMA-based trading strategies
20
+ - **Comprehensive Backtesting**: Historical performance analysis with risk metrics
21
+ - **Risk Management**: Configurable stop-loss, take-profit, and position sizing
22
+ - **Interactive Visualizations**: Plotly-powered charts and analysis tools
23
+
24
+ ### 📈 Technical Analysis
25
+ - **50+ Indian Stocks**: Pre-configured NSE stock symbols
26
+ - **Real-time Data**: Yahoo Finance integration with reliable data fetching
27
+ - **Multiple Timeframes**: Customizable periods for technical indicators
28
+ - **Advanced Charts**: Candlestick patterns, volume analysis, drawdown charts
29
+
30
+ ## 🚀 Quick Start
31
+
32
+ ### Prerequisites
33
+ ```bash
34
+ Python 3.8+
35
+ pip package manager
36
+ ```
37
+
38
+ ### Installation
39
+
40
+ 1. **Clone the repository**
41
+ ```bash
42
+ git clone https://github.com/yourusername/stock-trading-platform.git
43
+ cd stock-trading-platform
44
+ ```
45
+
46
+ 2. **Install dependencies**
47
+ ```bash
48
+ pip install -r requirements.txt
49
+ ```
50
+
51
+ 3. **Set up the project structure**
52
+ ```bash
53
+ mkdir -p src/logs src/models
54
+ ```
55
+
56
+ 4. **Download or train the ML models**
57
+ ```bash
58
+ # Place your trained models in src/models/
59
+ # - logistic_regression_model.pkl
60
+ # - scaler.pkl
61
+ ```
62
+
63
+ 5. **Run the application**
64
+ ```bash
65
+ streamlit run app.py
66
+ ```
67
+
68
+ 6. **Access the platform**
69
+ ```
70
+ Open your browser and navigate to http://localhost:8501
71
+ ```
72
+
73
+ ## 📁 Project Structure
74
+
75
+ ```
76
+ stock-trading-platform/
77
+
78
+ ├── app.py # Main Streamlit application
79
+ ├── requirements.txt # Python dependencies
80
+ ├── README.md # Project documentation
81
+
82
+ ├── src/
83
+ │ ├── indicators/ # Technical indicator modules
84
+ │ │ ├── __init__.py
85
+ │ │ ├── rsi.py # RSI calculation
86
+ │ │ ├── sma.py # Simple Moving Average
87
+ │ │ ├── ema.py # Exponential Moving Average
88
+ │ │ ├── macd.py # MACD indicator
89
+ │ │ └── enhanced_features.py # Advanced feature engineering
90
+ │ │
91
+ │ ├── strategy/ # Trading strategy modules
92
+ │ │ ├── __init__.py
93
+ │ │ └── rule_based_strategy.py # SMA/EMA trading strategies
94
+ │ │
95
+ │ ├── utils/ # Utility modules
96
+ │ │ ├── __init__.py
97
+ │ │ ├── backtester.py # Backtesting engine
98
+ │ │ └── logger.py # Logging configuration
99
+ │ │
100
+ │ ├── models/ # ML models and scalers
101
+ │ │ ├── logistic_regression_model.pkl
102
+ │ │ └── scaler.pkl
103
+ │ │
104
+ │ └── logs/ # Application logs
105
+ │ └── trading_app.log
106
+
107
+ └── data/ # Data storage (optional)
108
+ └── processed/
109
+ ```
110
+
111
+ ## 🛠️ Dependencies
112
+
113
+ ### Core Libraries
114
+ ```python
115
+ streamlit>=1.28.0 # Web application framework
116
+ pandas>=1.5.0 # Data manipulation
117
+ numpy>=1.24.0 # Numerical computing
118
+ plotly>=5.15.0 # Interactive visualizations
119
+ yfinance>=0.2.18 # Stock data fetching
120
+ scikit-learn>=1.3.0 # Machine learning
121
+ ```
122
+
123
+ ### Additional Dependencies
124
+ ```python
125
+ curl-cffi>=0.5.10 # HTTP requests with browser impersonation
126
+ pickle>=4.0 # Model serialization
127
+ datetime # Date/time handling
128
+ warnings # Warning management
129
+ logging # Application logging
130
+ ```
131
+
132
+ ## 📊 Supported Stocks
133
+
134
+ The platform supports 50+ major Indian stocks including:
135
+
136
+ **Banking & Finance**
137
+ - HDFCBANK.NS, ICICIBANK.NS, AXISBANK.NS, KOTAKBANK.NS, SBIN.NS
138
+
139
+ **Technology**
140
+ - TCS.NS, INFY.NS, HCLTECH.NS, TECHM.NS, WIPRO.NS
141
+
142
+ **Energy & Materials**
143
+ - RELIANCE.NS, ONGC.NS, COALINDIA.NS, NTPC.NS, POWERGRID.NS
144
+
145
+ **Consumer Goods**
146
+ - HINDUNILVR.NS, ITC.NS, NESTLEIND.NS, TATACONSUM.NS, BRITANNIA.NS
147
+
148
+ **And many more...**
149
+
150
+ ## 🔧 Configuration
151
+
152
+ ### Technical Indicators
153
+ - **RSI Period**: 5-30 days (default: 14)
154
+ - **Short-term SMA/EMA**: 5-50 days (default: 20)
155
+ - **Long-term SMA/EMA**: 50-200 days (default: 50)
156
+
157
+ ### Trading Parameters
158
+ - **Initial Capital**: ₹10,000 - ₹10,00,000 (default: ₹1,00,000)
159
+ - **Transaction Cost**: 0.0% - 1.0% (default: 0.1%)
160
+ - **Stop Loss**: 0% - 20% (default: 5%)
161
+ - **Take Profit**: 0% - 50% (default: 15%)
162
+
163
+ ### Risk Management
164
+ - Position sizing based on available capital
165
+ - Automatic stop-loss and take-profit execution
166
+ - Transaction cost simulation
167
+ - Drawdown analysis and monitoring
168
+
169
+ ## 🎯 Usage Guide
170
+
171
+ ### 1. Price Prediction
172
+ 1. Select a stock from the dropdown menu
173
+ 2. Choose your date range and technical indicator periods
174
+ 3. View the ML model's next-day price prediction
175
+ 4. Analyze confidence levels and technical charts
176
+ 5. Export prediction data for further analysis
177
+
178
+ ### 2. Trading Dashboard
179
+ 1. Configure your trading strategy (SMA or EMA based)
180
+ 2. Set backtesting parameters and risk management rules
181
+ 3. Run the backtest and analyze performance metrics
182
+ 4. Compare strategy performance vs buy-and-hold
183
+ 5. Review detailed trade analysis and export results
184
+
185
+ ### 3. Technical Analysis
186
+ 1. Examine multiple technical indicators simultaneously
187
+ 2. Identify trading signals and market trends
188
+ 3. Analyze volume patterns and momentum indicators
189
+ 4. Use Bollinger Bands for volatility analysis
190
+ 5. Monitor drawdown and risk metrics
191
+
192
+ ## 📈 Model Performance
193
+
194
+ ### Machine Learning Metrics
195
+ - **Accuracy**: 55.0%
196
+ - **F1 Score**: 0.4839
197
+ - **AUC Score**: 0.5370
198
+ - **Average Precision**: 0.5300
199
+
200
+ ### Feature Engineering
201
+ - **Total Features**: 59 technical indicators
202
+ - **Feature Categories**: Price, Volume, Volatility, Momentum, Position
203
+ - **Data Processing**: StandardScaler normalization
204
+ - **Model Type**: Logistic Regression with regularization
205
+
206
+ ## 🔍 Advanced Features
207
+
208
+ ### Enhanced Technical Analysis
209
+ - **Volatility Features**: Multi-timeframe volatility ratios and rankings
210
+ - **Lag Features**: Historical price and indicator dependencies
211
+ - **Volume Analysis**: Volume-price relationships and momentum
212
+ - **Position Features**: Price position relative to historical ranges
213
+
214
+ ### Backtesting Engine
215
+ - **Performance Metrics**: Sharpe ratio, maximum drawdown, win rate
216
+ - **Trade Analysis**: Individual trade performance and statistics
217
+ - **Risk Assessment**: Drawdown analysis and volatility measures
218
+ - **Comparison Tools**: Strategy vs buy-and-hold performance
219
+
220
+ ### Interactive Visualizations
221
+ - **Real-time Charts**: Dynamic price action with technical overlays
222
+ - **Signal Visualization**: Buy/sell signals on price charts
223
+ - **Performance Tracking**: Portfolio value progression over time
224
+ - **Distribution Analysis**: Trade returns and risk metrics
225
+
226
+ ## 🚨 Disclaimer
227
+
228
+ **Important**: This platform is designed for educational and research purposes only. Stock market investments carry inherent risks, and past performance does not guarantee future results.
229
+
230
+ **Risk Warning**:
231
+ - Always conduct your own research before making investment decisions
232
+ - Consider consulting with a qualified financial advisor
233
+ - Never invest more than you can afford to lose
234
+ - Markets can be volatile and unpredictable
235
+
236
+ ## 🤝 Contributing
237
+
238
+ We welcome contributions to improve the platform! Here's how you can help:
239
+
240
+ ### Areas for Contribution
241
+ - **New Trading Strategies**: Implement additional algorithmic strategies
242
+ - **Enhanced ML Models**: Add new prediction models and features
243
+ - **UI/UX Improvements**: Enhance the user interface and experience
244
+ - **Performance Optimization**: Improve code efficiency and speed
245
+ - **Bug Fixes**: Report and fix issues in the codebase
246
+
247
+ ### Contribution Process
248
+ 1. Fork the repository
249
+ 2. Create a feature branch (`git checkout -b feature/amazing-feature`)
250
+ 3. Commit your changes (`git commit -m 'Add amazing feature'`)
251
+ 4. Push to the branch (`git push origin feature/amazing-feature`)
252
+ 5. Open a Pull Request
253
+
254
+ ## 📝 License
255
+
256
+ This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
257
+
258
+ ## 👨‍💻 Author
259
+
260
+ **Zane Vijay Falcao**
261
+ - Email: [email protected]
262
+ - LinkedIn: [Your LinkedIn Profile]
263
+ - GitHub: [Your GitHub Profile]
264
+
265
+ ## 🙏 Acknowledgments
266
+
267
+ - **Yahoo Finance** for providing reliable stock market data
268
+ - **Streamlit** for the excellent web application framework
269
+ - **Plotly** for interactive visualization capabilities
270
+ - **Scikit-learn** for machine learning tools and utilities
271
+
272
+ ## 📞 Support
273
+
274
+ If you encounter any issues or have questions:
275
+
276
+ 1. **Check the Documentation**: Review this README and code comments
277
+ 2. **Search Issues**: Look through existing GitHub issues
278
+ 3. **Create New Issue**: Submit a detailed bug report or feature request
279
+ 4. **Contact Developer**: Reach out via email for urgent matters
280
+
281
+ ---
282
+
283
+ ⭐ **Star this repository if you find it helpful!** ⭐
284
+
285
+ ---
286
+
287
+ *Last Updated: August 2025*