Spaces:
Running
Running
Update services/analyzer.py
Browse files- services/analyzer.py +174 -174
services/analyzer.py
CHANGED
|
@@ -1,174 +1,174 @@
|
|
| 1 |
-
# services/analyzer.py
|
| 2 |
-
import numpy as np
|
| 3 |
-
import pandas as pd
|
| 4 |
-
from typing import Dict, Any, Optional
|
| 5 |
-
from services.economic_data import EconomicDataFetcher
|
| 6 |
-
from models.analysis import StockAnalysisResponse, InvestmentRecommendationResponse
|
| 7 |
-
from models.market_data import StockDataResponse
|
| 8 |
-
|
| 9 |
-
class IndianFinancialAnalyzer:
|
| 10 |
-
"""Analyze Indian market financial data"""
|
| 11 |
-
|
| 12 |
-
def __init__(self):
|
| 13 |
-
self.economic_data_fetcher = EconomicDataFetcher()
|
| 14 |
-
self.rbi_repo_rate = self.economic_data_fetcher.get_rbi_repo_rate()
|
| 15 |
-
self.indian_inflation_rate = self.economic_data_fetcher.get_indian_inflation_rate()
|
| 16 |
-
|
| 17 |
-
def analyze_indian_stock(self, stock_data: StockDataResponse, company_name: str) -> StockAnalysisResponse:
|
| 18 |
-
"""Comprehensive analysis of Indian stock"""
|
| 19 |
-
# Convert history dict back to DataFrame for analysis (basic reconstruction)
|
| 20 |
-
# This assumes the dict keys are column names and values are lists of values
|
| 21 |
-
try:
|
| 22 |
-
hist_df = pd.DataFrame(stock_data.history)
|
| 23 |
-
if 'Date' in hist_df.columns:
|
| 24 |
-
hist_df['Date'] = pd.to_datetime(hist_df['Date'])
|
| 25 |
-
hist_df.set_index('Date', inplace=True)
|
| 26 |
-
except Exception as e:
|
| 27 |
-
print(f"Error reconstructing DataFrame for analysis: {e}")
|
| 28 |
-
hist_df = pd.DataFrame() # Return empty DataFrame on error
|
| 29 |
-
|
| 30 |
-
if hist_df.empty:
|
| 31 |
-
analysis_text = "No data available for analysis"
|
| 32 |
-
else:
|
| 33 |
-
# Current metrics
|
| 34 |
-
current_price = hist_df['Close'].iloc[-1]
|
| 35 |
-
year_high = hist_df['High'].max()
|
| 36 |
-
year_low = hist_df['Low'].min()
|
| 37 |
-
|
| 38 |
-
# Calculate returns
|
| 39 |
-
returns_1m = ((current_price - hist_df['Close'].iloc[-21]) / hist_df['Close'].iloc[-21]) * 100 if len(hist_df) >= 21 else 0
|
| 40 |
-
returns_3m = ((current_price - hist_df['Close'].iloc[-63]) / hist_df['Close'].iloc[-63]) * 100 if len(hist_df) >= 63 else 0
|
| 41 |
-
returns_1y = ((current_price - hist_df['Close'].iloc[0]) / hist_df['Close'].iloc[0]) * 100
|
| 42 |
-
|
| 43 |
-
# Volatility (standard deviation of daily returns)
|
| 44 |
-
daily_returns = hist_df['Close'].pct_change().dropna()
|
| 45 |
-
volatility = daily_returns.std() * np.sqrt(252) * 100 # Annualized volatility
|
| 46 |
-
|
| 47 |
-
# Technical indicators
|
| 48 |
-
sma_20 = hist_df['Close'].rolling(20).mean().iloc[-1] if len(hist_df) >= 20 else np.nan
|
| 49 |
-
sma_50 = hist_df['Close'].rolling(50).mean().iloc[-1] if len(hist_df) >= 50 else np.nan
|
| 50 |
-
ema_20 = hist_df['Close'].ewm(span=20, adjust=False).mean().iloc[-1] if len(hist_df) >= 20 else np.nan
|
| 51 |
-
ema_50 = hist_df['Close'].ewm(span=50, adjust=False).mean().iloc[-1] if len(hist_df) >= 50 else np.nan
|
| 52 |
-
rsi = hist_df['Close'].diff().ewm(span=14, adjust=False).mean() / hist_df['Close'].diff().ewm(span=14, adjust=False).std()
|
| 53 |
-
macd = hist_df['Close'].ewm(span=12, adjust=False).mean() - hist_df['Close'].ewm(span=26, adjust=False).mean()
|
| 54 |
-
macd_signal = macd.ewm(span=9, adjust=False).mean()
|
| 55 |
-
macd_hist = macd - macd_signal
|
| 56 |
-
macd_cross = 'Bullish' if macd.iloc[-1] > macd_signal.iloc[-1] else 'Bearish'
|
| 57 |
-
stochastic_k = ((hist_df['Close'].iloc[-1] - hist_df['Low'].rolling(14).min().iloc[-1]) /
|
| 58 |
-
(hist_df['High'].rolling(14).max().iloc[-1] - hist_df['Low'].rolling(14).min().iloc[-1]) * 100) if len(hist_df) >= 14 else np.nan
|
| 59 |
-
stochastic_d = pd.Series(stochastic_k).rolling(3).mean().iloc[-1] if not pd.isna(stochastic_k) else np.nan
|
| 60 |
-
stochastic_cross = 'Bullish' if stochastic_k > stochastic_d else 'Bearish'
|
| 61 |
-
atr = hist_df['High'].combine(hist_df['Low'], max) - hist_df['Low'].combine(hist_df['Close'].shift(), min)
|
| 62 |
-
atr = atr.rolling(14).mean().iloc[-1] if len(hist_df) >= 14 else np.nan
|
| 63 |
-
obv = (np.sign(hist_df['Close'].diff()) * hist_df['Volume']).fillna(0).cumsum().iloc[-1]
|
| 64 |
-
mfi = 100 - (100 / (1 + (hist_df['Close'].diff().fillna(0) * hist_df['Volume']).rolling(14).sum() /
|
| 65 |
-
(-hist_df['Close'].diff().fillna(0) * hist_df['Volume']).rolling(14).sum())).iloc[-1] if len(hist_df) >= 14 else np.nan
|
| 66 |
-
adx = pd.Series(np.abs(hist_df['High'].diff()) - np.abs(hist_df['Low'].diff())).rolling(14).mean().iloc[-1] if len(hist_df) >= 14 else np.nan
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
# Determine trend
|
| 70 |
-
if pd.notna(current_price) and pd.notna(sma_20) and pd.notna(sma_50):
|
| 71 |
-
if current_price > sma_20 > sma_50:
|
| 72 |
-
trend = 'Bullish'
|
| 73 |
-
elif current_price < sma_20 < sma_50:
|
| 74 |
-
trend = 'Bearish'
|
| 75 |
-
else:
|
| 76 |
-
trend = 'Neutral'
|
| 77 |
-
else:
|
| 78 |
-
trend = 'Insufficient Data'
|
| 79 |
-
|
| 80 |
-
# Indian market specific analysis
|
| 81 |
-
analysis = f"""
|
| 82 |
-
##
|
| 83 |
-
|
| 84 |
-
### Current Market Position
|
| 85 |
-
- **Current Price**: ₹{current_price:.2f}
|
| 86 |
-
- **52-Week High**: ₹{year_high:.2f}
|
| 87 |
-
- **52-Week Low**: ₹{year_low:.2f}
|
| 88 |
-
- **Distance from High**: {((current_price - year_high) / year_high * 100):.1f}%
|
| 89 |
-
|
| 90 |
-
### Returns Performance
|
| 91 |
-
- **1 Month Return**: {returns_1m:.2f}%
|
| 92 |
-
- **3 Month Return**: {returns_3m:.2f}%
|
| 93 |
-
- **1 Year Return**: {returns_1y:.2f}%
|
| 94 |
-
- **Annualized Volatility**: {volatility:.2f}%
|
| 95 |
-
|
| 96 |
-
### Technical Analysis
|
| 97 |
-
- **20-Day SMA**: ₹{sma_20:.2f}
|
| 98 |
-
- **50-Day SMA**: ₹{sma_50:.2f}
|
| 99 |
-
- **20-Day EMA**: ₹{ema_20:.2f}
|
| 100 |
-
- **50-Day EMA**: ₹{ema_50:.2f}
|
| 101 |
-
- **RSI (14-day)**: {rsi.iloc[-1]:.2f}'
|
| 102 |
-
- **MACD**: {macd.iloc[-1]:.2f} ({macd_cross})
|
| 103 |
-
- **MACD HIST**: {macd_hist.iloc[-1]:.2f}
|
| 104 |
-
- **Stochastic %K**: {stochastic_k:.2f} ({stochastic_cross})
|
| 105 |
-
- **ATR (14-day)**: ₹{atr:.2f}'
|
| 106 |
-
- **OBV**: {obv:.2f}
|
| 107 |
-
- **MFI (14-day)**: {mfi:.2f}'
|
| 108 |
-
- **ADX (14-day)**: {adx:.2f}'
|
| 109 |
-
- **Trend**: {trend}
|
| 110 |
-
|
| 111 |
-
### Indian Market Context
|
| 112 |
-
- **Relative to RBI Repo Rate ({self.rbi_repo_rate}%)**: {'Attractive' if returns_1y > self.rbi_repo_rate else 'Underperforming'}
|
| 113 |
-
- **Inflation Adjusted Return**: {returns_1y - self.indian_inflation_rate:.2f}%
|
| 114 |
-
|
| 115 |
-
### Key Company Metrics
|
| 116 |
-
"""
|
| 117 |
-
|
| 118 |
-
# Add company-specific info if available
|
| 119 |
-
info = stock_data.info
|
| 120 |
-
if info:
|
| 121 |
-
market_cap = info.get('marketCap', 'N/A')
|
| 122 |
-
pe_ratio = info.get('forwardPE', info.get('trailingPE', 'N/A'))
|
| 123 |
-
dividend_yield = info.get('dividendYield', 0) * 100 if info.get('dividendYield') else 'N/A'
|
| 124 |
-
|
| 125 |
-
market_cap_str = f"₹{market_cap/10000000:.0f} Cr." if isinstance(market_cap, (int, float)) else market_cap
|
| 126 |
-
pe_str = f"{pe_ratio:.2f}" if isinstance(pe_ratio, (int, float)) else 'N/A'
|
| 127 |
-
div_yield_str = f"{dividend_yield:.2f}%" if isinstance(dividend_yield, (int, float)) else 'N/A'
|
| 128 |
-
|
| 129 |
-
analysis += f"""
|
| 130 |
-
- **Market Cap**: {market_cap_str}
|
| 131 |
-
- **P/E Ratio**: {pe_str}
|
| 132 |
-
- **Dividend Yield**: {div_yield_str}
|
| 133 |
-
"""
|
| 134 |
-
analysis_text = analysis
|
| 135 |
-
|
| 136 |
-
return StockAnalysisResponse(basic_analysis=analysis_text)
|
| 137 |
-
|
| 138 |
-
def generate_investment_recommendation(self) -> InvestmentRecommendationResponse:
|
| 139 |
-
"""Generate investment recommendation based on Indian market conditions"""
|
| 140 |
-
|
| 141 |
-
recommendation = f"""
|
| 142 |
-
## 📊 Investment Recommendation (Indian Market Context)
|
| 143 |
-
|
| 144 |
-
### Risk Assessment
|
| 145 |
-
- **Market Risk**: Indian equity markets are subject to high volatility
|
| 146 |
-
- **Currency Risk**: INR fluctuations affect returns for foreign investors
|
| 147 |
-
- **Regulatory Risk**: SEBI regulations and policy changes impact
|
| 148 |
-
|
| 149 |
-
### Recommendation Framework
|
| 150 |
-
Based on current Indian market conditions:
|
| 151 |
-
|
| 152 |
-
1. **Conservative Investors**: Consider Large Cap stocks with dividend yield
|
| 153 |
-
2. **Moderate Risk**: Mid Cap stocks with strong fundamentals
|
| 154 |
-
3. **Aggressive**: Small Cap and sector-specific opportunities
|
| 155 |
-
|
| 156 |
-
### Indian Market Specific Factors
|
| 157 |
-
- **Monsoon Impact**: Agricultural and rural demand dependency
|
| 158 |
-
- **Festival Season**: Seasonal consumption patterns
|
| 159 |
-
- **Government Policy**: Budget announcements and reforms
|
| 160 |
-
- **FII/DII Flows**: Foreign and domestic institutional investor sentiment
|
| 161 |
-
|
| 162 |
-
### Economic Context
|
| 163 |
-
- **RBI Repo Rate**: {self.rbi_repo_rate}%
|
| 164 |
-
- **Inflation Rate**: {self.indian_inflation_rate}%
|
| 165 |
-
|
| 166 |
-
### Tax Implications (Indian Investors)
|
| 167 |
-
- **Short Term Capital Gains**: 15% (< 1 year)
|
| 168 |
-
- **Long Term Capital Gains**: 10% on gains > ₹1 Lakh (> 1 year)
|
| 169 |
-
- **Dividend Tax**: TDS as per income tax slab
|
| 170 |
-
|
| 171 |
-
**Disclaimer**: This is for educational purposes only. Please consult a SEBI registered investment advisor.
|
| 172 |
-
"""
|
| 173 |
-
|
| 174 |
-
return InvestmentRecommendationResponse(recommendation=recommendation)
|
|
|
|
| 1 |
+
# services/analyzer.py
|
| 2 |
+
import numpy as np
|
| 3 |
+
import pandas as pd
|
| 4 |
+
from typing import Dict, Any, Optional
|
| 5 |
+
from services.economic_data import EconomicDataFetcher
|
| 6 |
+
from models.analysis import StockAnalysisResponse, InvestmentRecommendationResponse
|
| 7 |
+
from models.market_data import StockDataResponse
|
| 8 |
+
|
| 9 |
+
class IndianFinancialAnalyzer:
|
| 10 |
+
"""Analyze Indian market financial data"""
|
| 11 |
+
|
| 12 |
+
def __init__(self):
|
| 13 |
+
self.economic_data_fetcher = EconomicDataFetcher()
|
| 14 |
+
self.rbi_repo_rate = self.economic_data_fetcher.get_rbi_repo_rate()
|
| 15 |
+
self.indian_inflation_rate = self.economic_data_fetcher.get_indian_inflation_rate()
|
| 16 |
+
|
| 17 |
+
def analyze_indian_stock(self, stock_data: StockDataResponse, company_name: str) -> StockAnalysisResponse:
|
| 18 |
+
"""Comprehensive analysis of Indian stock"""
|
| 19 |
+
# Convert history dict back to DataFrame for analysis (basic reconstruction)
|
| 20 |
+
# This assumes the dict keys are column names and values are lists of values
|
| 21 |
+
try:
|
| 22 |
+
hist_df = pd.DataFrame(stock_data.history)
|
| 23 |
+
if 'Date' in hist_df.columns:
|
| 24 |
+
hist_df['Date'] = pd.to_datetime(hist_df['Date'])
|
| 25 |
+
hist_df.set_index('Date', inplace=True)
|
| 26 |
+
except Exception as e:
|
| 27 |
+
print(f"Error reconstructing DataFrame for analysis: {e}")
|
| 28 |
+
hist_df = pd.DataFrame() # Return empty DataFrame on error
|
| 29 |
+
|
| 30 |
+
if hist_df.empty:
|
| 31 |
+
analysis_text = "No data available for analysis"
|
| 32 |
+
else:
|
| 33 |
+
# Current metrics
|
| 34 |
+
current_price = hist_df['Close'].iloc[-1]
|
| 35 |
+
year_high = hist_df['High'].max()
|
| 36 |
+
year_low = hist_df['Low'].min()
|
| 37 |
+
|
| 38 |
+
# Calculate returns
|
| 39 |
+
returns_1m = ((current_price - hist_df['Close'].iloc[-21]) / hist_df['Close'].iloc[-21]) * 100 if len(hist_df) >= 21 else 0
|
| 40 |
+
returns_3m = ((current_price - hist_df['Close'].iloc[-63]) / hist_df['Close'].iloc[-63]) * 100 if len(hist_df) >= 63 else 0
|
| 41 |
+
returns_1y = ((current_price - hist_df['Close'].iloc[0]) / hist_df['Close'].iloc[0]) * 100
|
| 42 |
+
|
| 43 |
+
# Volatility (standard deviation of daily returns)
|
| 44 |
+
daily_returns = hist_df['Close'].pct_change().dropna()
|
| 45 |
+
volatility = daily_returns.std() * np.sqrt(252) * 100 # Annualized volatility
|
| 46 |
+
|
| 47 |
+
# Technical indicators
|
| 48 |
+
sma_20 = hist_df['Close'].rolling(20).mean().iloc[-1] if len(hist_df) >= 20 else np.nan
|
| 49 |
+
sma_50 = hist_df['Close'].rolling(50).mean().iloc[-1] if len(hist_df) >= 50 else np.nan
|
| 50 |
+
ema_20 = hist_df['Close'].ewm(span=20, adjust=False).mean().iloc[-1] if len(hist_df) >= 20 else np.nan
|
| 51 |
+
ema_50 = hist_df['Close'].ewm(span=50, adjust=False).mean().iloc[-1] if len(hist_df) >= 50 else np.nan
|
| 52 |
+
rsi = hist_df['Close'].diff().ewm(span=14, adjust=False).mean() / hist_df['Close'].diff().ewm(span=14, adjust=False).std()
|
| 53 |
+
macd = hist_df['Close'].ewm(span=12, adjust=False).mean() - hist_df['Close'].ewm(span=26, adjust=False).mean()
|
| 54 |
+
macd_signal = macd.ewm(span=9, adjust=False).mean()
|
| 55 |
+
macd_hist = macd - macd_signal
|
| 56 |
+
macd_cross = 'Bullish' if macd.iloc[-1] > macd_signal.iloc[-1] else 'Bearish'
|
| 57 |
+
stochastic_k = ((hist_df['Close'].iloc[-1] - hist_df['Low'].rolling(14).min().iloc[-1]) /
|
| 58 |
+
(hist_df['High'].rolling(14).max().iloc[-1] - hist_df['Low'].rolling(14).min().iloc[-1]) * 100) if len(hist_df) >= 14 else np.nan
|
| 59 |
+
stochastic_d = pd.Series(stochastic_k).rolling(3).mean().iloc[-1] if not pd.isna(stochastic_k) else np.nan
|
| 60 |
+
stochastic_cross = 'Bullish' if stochastic_k > stochastic_d else 'Bearish'
|
| 61 |
+
atr = hist_df['High'].combine(hist_df['Low'], max) - hist_df['Low'].combine(hist_df['Close'].shift(), min)
|
| 62 |
+
atr = atr.rolling(14).mean().iloc[-1] if len(hist_df) >= 14 else np.nan
|
| 63 |
+
obv = (np.sign(hist_df['Close'].diff()) * hist_df['Volume']).fillna(0).cumsum().iloc[-1]
|
| 64 |
+
mfi = 100 - (100 / (1 + (hist_df['Close'].diff().fillna(0) * hist_df['Volume']).rolling(14).sum() /
|
| 65 |
+
(-hist_df['Close'].diff().fillna(0) * hist_df['Volume']).rolling(14).sum())).iloc[-1] if len(hist_df) >= 14 else np.nan
|
| 66 |
+
adx = pd.Series(np.abs(hist_df['High'].diff()) - np.abs(hist_df['Low'].diff())).rolling(14).mean().iloc[-1] if len(hist_df) >= 14 else np.nan
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
# Determine trend
|
| 70 |
+
if pd.notna(current_price) and pd.notna(sma_20) and pd.notna(sma_50):
|
| 71 |
+
if current_price > sma_20 > sma_50:
|
| 72 |
+
trend = 'Bullish'
|
| 73 |
+
elif current_price < sma_20 < sma_50:
|
| 74 |
+
trend = 'Bearish'
|
| 75 |
+
else:
|
| 76 |
+
trend = 'Neutral'
|
| 77 |
+
else:
|
| 78 |
+
trend = 'Insufficient Data'
|
| 79 |
+
|
| 80 |
+
# Indian market specific analysis
|
| 81 |
+
analysis = f"""
|
| 82 |
+
## Indian Market Analysis for {company_name}
|
| 83 |
+
|
| 84 |
+
### Current Market Position
|
| 85 |
+
- **Current Price**: ₹{current_price:.2f}
|
| 86 |
+
- **52-Week High**: ₹{year_high:.2f}
|
| 87 |
+
- **52-Week Low**: ₹{year_low:.2f}
|
| 88 |
+
- **Distance from High**: {((current_price - year_high) / year_high * 100):.1f}%
|
| 89 |
+
|
| 90 |
+
### Returns Performance
|
| 91 |
+
- **1 Month Return**: {returns_1m:.2f}%
|
| 92 |
+
- **3 Month Return**: {returns_3m:.2f}%
|
| 93 |
+
- **1 Year Return**: {returns_1y:.2f}%
|
| 94 |
+
- **Annualized Volatility**: {volatility:.2f}%
|
| 95 |
+
|
| 96 |
+
### Technical Analysis
|
| 97 |
+
- **20-Day SMA**: ₹{sma_20:.2f}
|
| 98 |
+
- **50-Day SMA**: ₹{sma_50:.2f}
|
| 99 |
+
- **20-Day EMA**: ₹{ema_20:.2f}
|
| 100 |
+
- **50-Day EMA**: ₹{ema_50:.2f}
|
| 101 |
+
- **RSI (14-day)**: {rsi.iloc[-1]:.2f}'
|
| 102 |
+
- **MACD**: {macd.iloc[-1]:.2f} ({macd_cross})
|
| 103 |
+
- **MACD HIST**: {macd_hist.iloc[-1]:.2f}
|
| 104 |
+
- **Stochastic %K**: {stochastic_k:.2f} ({stochastic_cross})
|
| 105 |
+
- **ATR (14-day)**: ₹{atr:.2f}'
|
| 106 |
+
- **OBV**: {obv:.2f}
|
| 107 |
+
- **MFI (14-day)**: {mfi:.2f}'
|
| 108 |
+
- **ADX (14-day)**: {adx:.2f}'
|
| 109 |
+
- **Trend**: {trend}
|
| 110 |
+
|
| 111 |
+
### Indian Market Context
|
| 112 |
+
- **Relative to RBI Repo Rate ({self.rbi_repo_rate}%)**: {'Attractive' if returns_1y > self.rbi_repo_rate else 'Underperforming'}
|
| 113 |
+
- **Inflation Adjusted Return**: {returns_1y - self.indian_inflation_rate:.2f}%
|
| 114 |
+
|
| 115 |
+
### Key Company Metrics
|
| 116 |
+
"""
|
| 117 |
+
|
| 118 |
+
# Add company-specific info if available
|
| 119 |
+
info = stock_data.info
|
| 120 |
+
if info:
|
| 121 |
+
market_cap = info.get('marketCap', 'N/A')
|
| 122 |
+
pe_ratio = info.get('forwardPE', info.get('trailingPE', 'N/A'))
|
| 123 |
+
dividend_yield = info.get('dividendYield', 0) * 100 if info.get('dividendYield') else 'N/A'
|
| 124 |
+
|
| 125 |
+
market_cap_str = f"₹{market_cap/10000000:.0f} Cr." if isinstance(market_cap, (int, float)) else market_cap
|
| 126 |
+
pe_str = f"{pe_ratio:.2f}" if isinstance(pe_ratio, (int, float)) else 'N/A'
|
| 127 |
+
div_yield_str = f"{dividend_yield:.2f}%" if isinstance(dividend_yield, (int, float)) else 'N/A'
|
| 128 |
+
|
| 129 |
+
analysis += f"""
|
| 130 |
+
- **Market Cap**: {market_cap_str}
|
| 131 |
+
- **P/E Ratio**: {pe_str}
|
| 132 |
+
- **Dividend Yield**: {div_yield_str}
|
| 133 |
+
"""
|
| 134 |
+
analysis_text = analysis
|
| 135 |
+
|
| 136 |
+
return StockAnalysisResponse(basic_analysis=analysis_text)
|
| 137 |
+
|
| 138 |
+
def generate_investment_recommendation(self) -> InvestmentRecommendationResponse:
|
| 139 |
+
"""Generate investment recommendation based on Indian market conditions"""
|
| 140 |
+
|
| 141 |
+
recommendation = f"""
|
| 142 |
+
## 📊 Investment Recommendation (Indian Market Context)
|
| 143 |
+
|
| 144 |
+
### Risk Assessment
|
| 145 |
+
- **Market Risk**: Indian equity markets are subject to high volatility
|
| 146 |
+
- **Currency Risk**: INR fluctuations affect returns for foreign investors
|
| 147 |
+
- **Regulatory Risk**: SEBI regulations and policy changes impact
|
| 148 |
+
|
| 149 |
+
### Recommendation Framework
|
| 150 |
+
Based on current Indian market conditions:
|
| 151 |
+
|
| 152 |
+
1. **Conservative Investors**: Consider Large Cap stocks with dividend yield
|
| 153 |
+
2. **Moderate Risk**: Mid Cap stocks with strong fundamentals
|
| 154 |
+
3. **Aggressive**: Small Cap and sector-specific opportunities
|
| 155 |
+
|
| 156 |
+
### Indian Market Specific Factors
|
| 157 |
+
- **Monsoon Impact**: Agricultural and rural demand dependency
|
| 158 |
+
- **Festival Season**: Seasonal consumption patterns
|
| 159 |
+
- **Government Policy**: Budget announcements and reforms
|
| 160 |
+
- **FII/DII Flows**: Foreign and domestic institutional investor sentiment
|
| 161 |
+
|
| 162 |
+
### Economic Context
|
| 163 |
+
- **RBI Repo Rate**: {self.rbi_repo_rate}%
|
| 164 |
+
- **Inflation Rate**: {self.indian_inflation_rate}%
|
| 165 |
+
|
| 166 |
+
### Tax Implications (Indian Investors)
|
| 167 |
+
- **Short Term Capital Gains**: 15% (< 1 year)
|
| 168 |
+
- **Long Term Capital Gains**: 10% on gains > ₹1 Lakh (> 1 year)
|
| 169 |
+
- **Dividend Tax**: TDS as per income tax slab
|
| 170 |
+
|
| 171 |
+
**Disclaimer**: This is for educational purposes only. Please consult a SEBI registered investment advisor.
|
| 172 |
+
"""
|
| 173 |
+
|
| 174 |
+
return InvestmentRecommendationResponse(recommendation=recommendation)
|