import pandas as pd from datetime import datetime from typing import Dict, Any, List def create_comprehensive_csv_data(data_source: str, company_info: str, accounting_standards: str, regulatory_frameworks: List[str], result: Dict[str, Any]) -> pd.DataFrame: """Create comprehensive CSV data with all analysis information""" # Extract company information company_parts = company_info.split(" in the ") company_type = company_parts[0] if len(company_parts) > 0 else "N/A" industry_sector = company_parts[1].split(", classified as")[0] if len(company_parts) > 1 else "N/A" company_size = company_parts[1].split("classified as ")[1].split(", for")[0] if len(company_parts) > 1 else "N/A" financial_year = company_parts[1].split("for ")[-1] if len(company_parts) > 1 else "N/A" # Create comprehensive data structure comprehensive_data = [] # 1. Basic Information comprehensive_data.append({ 'Category': 'Basic Information', 'Field': 'Analysis Timestamp', 'Value': datetime.now().strftime("%Y-%m-%d %H:%M:%S"), 'Details': 'Time when analysis was performed', 'Priority': '', 'Timeline': '', 'Regulation': '' }) comprehensive_data.append({ 'Category': 'Basic Information', 'Field': 'Data Source', 'Value': data_source, 'Details': 'Source of financial data used for analysis', 'Priority': '', 'Timeline': '', 'Regulation': '' }) comprehensive_data.append({ 'Category': 'Basic Information', 'Field': 'Company Type', 'Value': company_type, 'Details': 'Legal structure of the company', 'Priority': '', 'Timeline': '', 'Regulation': '' }) comprehensive_data.append({ 'Category': 'Basic Information', 'Field': 'Industry Sector', 'Value': industry_sector, 'Details': 'Primary business sector', 'Priority': '', 'Timeline': '', 'Regulation': '' }) comprehensive_data.append({ 'Category': 'Basic Information', 'Field': 'Company Size', 'Value': company_size, 'Details': 'Classification based on turnover and capital', 'Priority': '', 'Timeline': '', 'Regulation': '' }) comprehensive_data.append({ 'Category': 'Basic Information', 'Field': 'Financial Year', 'Value': financial_year, 'Details': 'Reporting period under analysis', 'Priority': '', 'Timeline': '', 'Regulation': '' }) comprehensive_data.append({ 'Category': 'Basic Information', 'Field': 'Accounting Standards', 'Value': accounting_standards, 'Details': 'Applicable accounting framework', 'Priority': '', 'Timeline': '', 'Regulation': '' }) comprehensive_data.append({ 'Category': 'Basic Information', 'Field': 'Regulatory Frameworks', 'Value': ', '.join(regulatory_frameworks), 'Details': 'Applicable regulatory requirements', 'Priority': '', 'Timeline': '', 'Regulation': '' }) # 2. AI Analysis Results (if available) if isinstance(result, dict) and 'response' in result: comprehensive_data.append({ 'Category': 'AI Analysis Results', 'Field': 'Full Analysis Response', 'Value': 'AI Generated Compliance Analysis', 'Details': result['response'][:1000] + '...' if len(result['response']) > 1000 else result['response'], 'Priority': '', 'Timeline': '', 'Regulation': '' }) return pd.DataFrame(comprehensive_data)