Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- USEME.MD +214 -0
- streamlit_app.py +936 -0
USEME.MD
ADDED
@@ -0,0 +1,214 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Indian Financial Compliance System - Usage Guide
|
2 |
+
|
3 |
+
## Overview
|
4 |
+
The Indian Financial Compliance System is a comprehensive tool for analyzing financial data of Indian companies against regulatory compliance requirements. It consists of a FastAPI backend and a Streamlit frontend.
|
5 |
+
|
6 |
+
## Prerequisites
|
7 |
+
- Python 3.8+
|
8 |
+
- API key for Swarms API (set in environment variables)
|
9 |
+
|
10 |
+
## Setup Instructions
|
11 |
+
|
12 |
+
### 1. Clone the Repository
|
13 |
+
```bash
|
14 |
+
git clone <repository-url>
|
15 |
+
cd indian-compliance-system
|
16 |
+
```
|
17 |
+
|
18 |
+
### 2. Install Dependencies
|
19 |
+
```bash
|
20 |
+
# Create virtual environment
|
21 |
+
python -m venv venv
|
22 |
+
|
23 |
+
# Activate virtual environment (Windows)
|
24 |
+
venv\Scripts\activate
|
25 |
+
|
26 |
+
# Activate virtual environment (Linux/Mac)
|
27 |
+
source venv/bin/activate
|
28 |
+
|
29 |
+
# Install dependencies
|
30 |
+
pip install -r requirements.txt
|
31 |
+
```
|
32 |
+
|
33 |
+
### 3. Environment Configuration
|
34 |
+
Create a `.env` file in the root directory:
|
35 |
+
```env
|
36 |
+
SWARMS_API_KEY=your_swarms_api_key_here
|
37 |
+
```
|
38 |
+
|
39 |
+
### 4. Run the Backend (FastAPI)
|
40 |
+
```bash
|
41 |
+
uvicorn app.main:app --reload --host 0.0.0.0 --port 8000
|
42 |
+
```
|
43 |
+
The API will be available at `http://localhost:8000` with documentation at `http://localhost:8000/docs`.
|
44 |
+
|
45 |
+
### 5. Run the Frontend (Streamlit)
|
46 |
+
```bash
|
47 |
+
streamlit run streamlit_app.py
|
48 |
+
```
|
49 |
+
The Streamlit app will be available at `http://localhost:8501`.
|
50 |
+
|
51 |
+
## API Endpoints
|
52 |
+
|
53 |
+
### 1. Get Stock Data
|
54 |
+
**Endpoint:** `POST /api/v1/stock-data`
|
55 |
+
|
56 |
+
**Request Body:**
|
57 |
+
```json
|
58 |
+
{
|
59 |
+
"symbol": "RELIANCE"
|
60 |
+
}
|
61 |
+
```
|
62 |
+
|
63 |
+
**Response:**
|
64 |
+
```json
|
65 |
+
{
|
66 |
+
"success": true,
|
67 |
+
"data": { ... },
|
68 |
+
"formatted_data": "COMPANY INFORMATION: ..."
|
69 |
+
}
|
70 |
+
```
|
71 |
+
|
72 |
+
### 2. Run Compliance Analysis
|
73 |
+
**Endpoint:** `POST /api/v1/compliance-analysis`
|
74 |
+
|
75 |
+
**Request Body:**
|
76 |
+
```json
|
77 |
+
{
|
78 |
+
"financial_data": "Balance Sheet as at 31st March 2023: ...",
|
79 |
+
"company_info": "Public Limited Company in the Oil & Gas sector...",
|
80 |
+
"data_source": "NSE Listed Company (Live Data)",
|
81 |
+
"accounting_standards": "Indian Accounting Standards (Ind AS)",
|
82 |
+
"regulatory_frameworks": [
|
83 |
+
"Companies Act 2013",
|
84 |
+
"SEBI LODR Regulations"
|
85 |
+
]
|
86 |
+
}
|
87 |
+
```
|
88 |
+
|
89 |
+
**Response:**
|
90 |
+
```json
|
91 |
+
{
|
92 |
+
"success": true,
|
93 |
+
"result": {
|
94 |
+
"response": "Compliance analysis completed successfully...",
|
95 |
+
"analysis_details": { ... }
|
96 |
+
}
|
97 |
+
}
|
98 |
+
```
|
99 |
+
|
100 |
+
### 3. Generate CSV Report
|
101 |
+
**Endpoint:** `POST /api/v1/generate-csv`
|
102 |
+
|
103 |
+
**Request Body:**
|
104 |
+
```json
|
105 |
+
{
|
106 |
+
"data_source": "NSE Listed Company (Live Data)",
|
107 |
+
"company_info": "Public Limited Company in the Oil & Gas sector...",
|
108 |
+
"accounting_standards": "Indian Accounting Standards (Ind AS)",
|
109 |
+
"regulatory_frameworks": [
|
110 |
+
"Companies Act 2013",
|
111 |
+
"SEBI LODR Regulations"
|
112 |
+
],
|
113 |
+
"result": {
|
114 |
+
"response": "Compliance analysis completed successfully...",
|
115 |
+
"analysis_details": { ... }
|
116 |
+
}
|
117 |
+
}
|
118 |
+
```
|
119 |
+
|
120 |
+
**Response:** Returns a downloadable CSV file.
|
121 |
+
|
122 |
+
### 4. Get Popular Stocks
|
123 |
+
**Endpoint:** `GET /api/v1/popular-stocks`
|
124 |
+
|
125 |
+
**Response:**
|
126 |
+
```json
|
127 |
+
{
|
128 |
+
"stocks": ["RELIANCE", "TATA", "INFY", ...]
|
129 |
+
}
|
130 |
+
```
|
131 |
+
|
132 |
+
## Example Usage
|
133 |
+
|
134 |
+
### Using curl to Test Endpoints
|
135 |
+
|
136 |
+
1. **Get Stock Data:**
|
137 |
+
```bash
|
138 |
+
curl -X POST "http://localhost:8000/api/v1/stock-data" \
|
139 |
+
-H "Content-Type: application/json" \
|
140 |
+
-d '{"symbol": "RELIANCE"}'
|
141 |
+
```
|
142 |
+
|
143 |
+
2. **Run Compliance Analysis:**
|
144 |
+
```bash
|
145 |
+
curl -X POST "http://localhost:8000/api/v1/compliance-analysis" \
|
146 |
+
-H "Content-Type: application/json" \
|
147 |
+
-d '{
|
148 |
+
"financial_data": "Balance Sheet as at 31st March 2023: ...",
|
149 |
+
"company_info": "Public Limited Company in the Oil & Gas sector...",
|
150 |
+
"data_source": "NSE Listed Company (Live Data)",
|
151 |
+
"accounting_standards": "Indian Accounting Standards (Ind AS)",
|
152 |
+
"regulatory_frameworks": ["Companies Act 2013", "SEBI LODR Regulations"]
|
153 |
+
}'
|
154 |
+
```
|
155 |
+
|
156 |
+
3. **Generate CSV Report:**
|
157 |
+
```bash
|
158 |
+
curl -X POST "http://localhost:8000/api/v1/generate-csv" \
|
159 |
+
-H "Content-Type: application/json" \
|
160 |
+
-d '{
|
161 |
+
"data_source": "NSE Listed Company (Live Data)",
|
162 |
+
"company_info": "Public Limited Company in the Oil & Gas sector...",
|
163 |
+
"accounting_standards": "Indian Accounting Standards (Ind AS)",
|
164 |
+
"regulatory_frameworks": ["Companies Act 2013", "SEBI LODR Regulations"],
|
165 |
+
"result": {
|
166 |
+
"response": "Compliance analysis completed successfully...",
|
167 |
+
"analysis_details": { ... }
|
168 |
+
}
|
169 |
+
}' \
|
170 |
+
--output compliance_report.csv
|
171 |
+
```
|
172 |
+
|
173 |
+
## Features
|
174 |
+
|
175 |
+
1. **Live NSE Data Fetching:** Get real-time financial data for Indian companies listed on NSE
|
176 |
+
2. **Multi-Agent Analysis:** Three specialized AI agents analyze different aspects of compliance:
|
177 |
+
- Documentation Analyzer
|
178 |
+
- Accounting Standards Expert
|
179 |
+
- Regulatory Compliance Specialist
|
180 |
+
3. **Comprehensive Reporting:** Generate detailed compliance reports in CSV format
|
181 |
+
4. **Risk Assessment:** Visualize and assess regulatory risks specific to Indian companies
|
182 |
+
5. **Historical Analysis:** Track and compare compliance analyses over time
|
183 |
+
|
184 |
+
## Supported Regulations
|
185 |
+
|
186 |
+
- Indian Accounting Standards (Ind AS)
|
187 |
+
- Companies Act 2013
|
188 |
+
- SEBI LODR Regulations
|
189 |
+
- SEBI ICDR Regulations
|
190 |
+
- RBI Guidelines
|
191 |
+
- FEMA Regulations
|
192 |
+
- Income Tax Act 1961
|
193 |
+
- GST Regulations
|
194 |
+
- RERA (Real Estate)
|
195 |
+
- Insurance Regulatory Act
|
196 |
+
- Banking Regulation Act
|
197 |
+
|
198 |
+
## Troubleshooting
|
199 |
+
|
200 |
+
1. **API Key Issues:** Ensure your SWARMS_API_KEY is correctly set in the .env file
|
201 |
+
2. **Port Conflicts:** Change ports if 8000 or 8501 are already in use
|
202 |
+
3. **Dependency Issues:** Reinstall requirements if facing module import errors
|
203 |
+
4. **Data Fetching Errors:** Check internet connection and stock symbol validity
|
204 |
+
|
205 |
+
## Support
|
206 |
+
|
207 |
+
For issues or questions:
|
208 |
+
1. Check the API documentation at `http://localhost:8000/docs`
|
209 |
+
2. Verify environment variables are correctly set
|
210 |
+
3. Ensure all dependencies are installed
|
211 |
+
|
212 |
+
## License
|
213 |
+
|
214 |
+
This project is for educational and demonstration purposes. Ensure you comply with the terms of service of the Swarms API and any data providers when using this system in production.
|
streamlit_app.py
ADDED
@@ -0,0 +1,936 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# streamlit_indian_compliance_app.py
|
2 |
+
import streamlit as st
|
3 |
+
import json
|
4 |
+
import os
|
5 |
+
import requests
|
6 |
+
from dotenv import load_dotenv
|
7 |
+
import pandas as pd
|
8 |
+
from datetime import datetime
|
9 |
+
import plotly.express as px
|
10 |
+
import yfinance as yf
|
11 |
+
import time
|
12 |
+
from typing import Optional, Dict, Any, List
|
13 |
+
|
14 |
+
# Load environment variables
|
15 |
+
load_dotenv()
|
16 |
+
|
17 |
+
# Configuration
|
18 |
+
API_KEY = os.getenv("SWARMS_API_KEY")
|
19 |
+
BASE_URL = "https://api.swarms.world"
|
20 |
+
|
21 |
+
# Standard headers for all requests
|
22 |
+
headers = {
|
23 |
+
"x-api-key": API_KEY,
|
24 |
+
"Content-Type": "application/json"
|
25 |
+
}
|
26 |
+
|
27 |
+
class IndianDataProvider:
|
28 |
+
"""Handles integration with Indian financial data APIs"""
|
29 |
+
|
30 |
+
def __init__(self):
|
31 |
+
pass
|
32 |
+
|
33 |
+
def get_nse_stock_data(self, symbol: str) -> Dict[str, Any]:
|
34 |
+
"""Get NSE stock data using Yahoo Finance with direct metric extraction"""
|
35 |
+
try:
|
36 |
+
# Create ticker with NSE suffix
|
37 |
+
ticker = yf.Ticker(f"{symbol}.NS")
|
38 |
+
info = ticker.info
|
39 |
+
financials = ticker.financials
|
40 |
+
balance_sheet = ticker.balance_sheet
|
41 |
+
cash_flow = ticker.cashflow
|
42 |
+
|
43 |
+
# Extract key metrics directly from info
|
44 |
+
current_price = info.get("currentPrice")
|
45 |
+
total_revenue = info.get("totalRevenue")
|
46 |
+
net_income = info.get("netIncomeToCommon")
|
47 |
+
total_debt = info.get("totalDebt")
|
48 |
+
|
49 |
+
return {
|
50 |
+
'success': True,
|
51 |
+
'info': info,
|
52 |
+
'financials': financials.to_dict() if not financials.empty else {},
|
53 |
+
'balance_sheet': balance_sheet.to_dict() if not balance_sheet.empty else {},
|
54 |
+
'cash_flow': cash_flow.to_dict() if not cash_flow.empty else {},
|
55 |
+
'current_price': current_price,
|
56 |
+
'total_revenue': total_revenue,
|
57 |
+
'net_income': net_income,
|
58 |
+
'total_debt': total_debt,
|
59 |
+
'price_source': 'Yahoo Finance'
|
60 |
+
}
|
61 |
+
except Exception as e:
|
62 |
+
return {"success": False, "error": str(e)}
|
63 |
+
|
64 |
+
def format_stock_data_for_analysis(self, stock_data: Dict[str, Any]) -> str:
|
65 |
+
"""Format NSE stock data for compliance analysis"""
|
66 |
+
if not stock_data.get('success'):
|
67 |
+
return f"Error fetching stock data: {stock_data.get('error', 'Unknown error')}"
|
68 |
+
|
69 |
+
try:
|
70 |
+
info = stock_data['info']
|
71 |
+
financials = stock_data['financials']
|
72 |
+
balance_sheet = stock_data['balance_sheet']
|
73 |
+
|
74 |
+
# Use directly extracted metrics
|
75 |
+
current_price = stock_data.get('current_price')
|
76 |
+
total_revenue = stock_data.get('total_revenue')
|
77 |
+
net_income = stock_data.get('net_income')
|
78 |
+
total_debt = stock_data.get('total_debt')
|
79 |
+
|
80 |
+
# Format currency values
|
81 |
+
def format_currency(value):
|
82 |
+
if value is None:
|
83 |
+
return "N/A"
|
84 |
+
return f"₹{value:,.2f}"
|
85 |
+
|
86 |
+
def get_total_liabilities(balance_sheet: dict) -> float:
|
87 |
+
for timestamp, financials in balance_sheet.items():
|
88 |
+
if 'Total Liabilities Net Minority Interest' in financials:
|
89 |
+
return financials['Total Liabilities Net Minority Interest']
|
90 |
+
return None
|
91 |
+
|
92 |
+
def get_total_assets(balance_sheet: dict) -> float:
|
93 |
+
for timestamp, financials in balance_sheet.items():
|
94 |
+
if 'Total Assets' in financials:
|
95 |
+
return financials['Total Assets']
|
96 |
+
return None
|
97 |
+
|
98 |
+
total_assets = get_total_assets(balance_sheet)
|
99 |
+
total_liabilities = get_total_liabilities(balance_sheet)
|
100 |
+
shareholders_equity = total_assets - total_liabilities if total_assets and total_liabilities else None
|
101 |
+
|
102 |
+
def get_ebitda(financials: dict) -> float:
|
103 |
+
for timestamp, data in financials.items():
|
104 |
+
if 'EBITDA' in data:
|
105 |
+
return data['EBITDA']
|
106 |
+
return None
|
107 |
+
|
108 |
+
symbol_ebitda = get_ebitda(financials)
|
109 |
+
|
110 |
+
def get_gross_profit(financials: dict) -> float:
|
111 |
+
for timestamp, data in financials.items():
|
112 |
+
if 'Gross Profit' in data:
|
113 |
+
return data['Gross Profit']
|
114 |
+
return None
|
115 |
+
|
116 |
+
gross_profit = get_gross_profit(financials)
|
117 |
+
|
118 |
+
def get_operating_income(financials: dict) -> float:
|
119 |
+
for timestamp, data in financials.items():
|
120 |
+
if 'Operating Income' in data:
|
121 |
+
return data['Operating Income']
|
122 |
+
return None
|
123 |
+
|
124 |
+
operating_income = get_operating_income(financials)
|
125 |
+
|
126 |
+
def get_operating_revenue(financials: dict) -> float:
|
127 |
+
for timestamp, data in financials.items():
|
128 |
+
if 'Operating Revenue' in data:
|
129 |
+
return data['Operating Revenue']
|
130 |
+
return None
|
131 |
+
|
132 |
+
operating_revenue = get_operating_revenue(financials)
|
133 |
+
|
134 |
+
def get_total_equity(balance_sheet: dict) -> float:
|
135 |
+
for timestamp, data in balance_sheet.items():
|
136 |
+
if 'Total Equity Gross Minority Interest' in data:
|
137 |
+
return data['Total Equity Gross Minority Interest']
|
138 |
+
return None
|
139 |
+
|
140 |
+
total_equity = get_total_equity(balance_sheet)
|
141 |
+
debt_to_equity = (total_debt / total_equity) if total_debt and total_equity else None
|
142 |
+
|
143 |
+
formatted_data = f"""
|
144 |
+
COMPANY INFORMATION:
|
145 |
+
Company Name: {info.get('longName', 'N/A')}
|
146 |
+
Symbol: {info.get('symbol', 'N/A')}
|
147 |
+
Sector: {info.get('sector', 'N/A')}
|
148 |
+
Industry: {info.get('industry', 'N/A')}
|
149 |
+
Market Cap: {format_currency(info.get('marketCap'))}
|
150 |
+
Employees: {info.get('fullTimeEmployees', 'N/A')}
|
151 |
+
|
152 |
+
CURRENT PRICE: {format_currency(current_price)} (Source: Yahoo Finance)
|
153 |
+
|
154 |
+
FINANCIAL HIGHLIGHTS:
|
155 |
+
52 Week High: {format_currency(info.get('fiftyTwoWeekHigh'))}
|
156 |
+
52 Week Low: {format_currency(info.get('fiftyTwoWeekLow'))}
|
157 |
+
P/E Ratio: {info.get('trailingPE', 'N/A')}
|
158 |
+
Book Value: {format_currency(info.get('bookValue'))}
|
159 |
+
Dividend Yield: {info.get('dividendYield', 'N/A')}%
|
160 |
+
|
161 |
+
FINANCIAL STATEMENTS:
|
162 |
+
Revenue (Latest): {format_currency(total_revenue)}
|
163 |
+
Net Income (Latest): {format_currency(net_income)}
|
164 |
+
Total Assets (Latest): {format_currency(total_assets)}
|
165 |
+
Total Debt (Latest): {format_currency(total_debt)}
|
166 |
+
Total Equity (Latest): {format_currency(total_equity)}
|
167 |
+
Debt to Equity Ratio: {(f"{debt_to_equity:.2f}" if debt_to_equity else "N/A")}
|
168 |
+
Total Liabilities: {format_currency(total_liabilities)}
|
169 |
+
Shareholders Equity: {format_currency(shareholders_equity)}
|
170 |
+
EBITDA: {(format_currency(symbol_ebitda) if symbol_ebitda else "N/A")}
|
171 |
+
Gross Profit: {format_currency(gross_profit)}
|
172 |
+
Operating Income: {format_currency(operating_income)}
|
173 |
+
Operating Revenue: {format_currency(operating_revenue)}
|
174 |
+
|
175 |
+
BUSINESS SUMMARY:
|
176 |
+
{info.get('longBusinessSummary', 'N/A')}
|
177 |
+
|
178 |
+
GOVERNANCE:
|
179 |
+
Board Members: {len(info.get('companyOfficers', []))} officers listed
|
180 |
+
Audit Risk: {info.get('auditRisk', 'N/A')}
|
181 |
+
Board Risk: {info.get('boardRisk', 'N/A')}
|
182 |
+
Compensation Risk: {info.get('compensationRisk', 'N/A')}
|
183 |
+
Shareholder Rights Risk: {info.get('shareHolderRightsRisk', 'N/A')}
|
184 |
+
Overall Risk: {info.get('overallRisk', 'N/A')}
|
185 |
+
"""
|
186 |
+
|
187 |
+
return formatted_data.strip()
|
188 |
+
|
189 |
+
except Exception as e:
|
190 |
+
return f"Error formatting stock data: {str(e)}"
|
191 |
+
|
192 |
+
def run_swarm(swarm_config):
|
193 |
+
"""Execute a swarm with the provided configuration."""
|
194 |
+
try:
|
195 |
+
response = requests.post(
|
196 |
+
f"{BASE_URL}/v1/swarm/completions",
|
197 |
+
headers=headers,
|
198 |
+
json=swarm_config
|
199 |
+
)
|
200 |
+
return response.json()
|
201 |
+
except Exception as e:
|
202 |
+
return {"error": str(e)}
|
203 |
+
|
204 |
+
def create_indian_compliance_swarm(financial_data, company_info):
|
205 |
+
"""Create a swarm for Indian financial compliance assistance."""
|
206 |
+
|
207 |
+
DOCUMENTATION_ANALYZER_PROMPT = """
|
208 |
+
You are a financial documentation specialist with expertise in Indian financial reporting standards and regulations.
|
209 |
+
Your role is to analyze financial statements and disclosures for compliance with Indian requirements.
|
210 |
+
Your tasks include:
|
211 |
+
1. Reviewing financial statements for completeness under Indian Accounting Standards (Ind AS) or AS
|
212 |
+
2. Analyzing annual reports and board reports for mandatory disclosures
|
213 |
+
3. Checking compliance with Companies Act 2013 disclosure requirements
|
214 |
+
4. Verifying CSR reporting and ESG disclosures as per Indian regulations
|
215 |
+
5. Ensuring proper disclosure of related party transactions under Indian law
|
216 |
+
6. Reviewing audit reports and internal financial control assessments
|
217 |
+
7. Checking compliance with SEBI disclosure norms (for listed companies)
|
218 |
+
8. Analyzing tax provisions and deferred tax disclosures under Indian tax laws
|
219 |
+
|
220 |
+
Focus on Indian regulatory framework and provide findings specific to Indian compliance requirements.
|
221 |
+
"""
|
222 |
+
|
223 |
+
ACCOUNTING_STANDARDS_PROMPT = """
|
224 |
+
You are an expert in Indian Accounting Standards (Ind AS) and legacy Accounting Standards (AS) with deep knowledge of Indian GAAP requirements.
|
225 |
+
Your responsibility is to ensure financial statements comply with applicable Indian accounting frameworks.
|
226 |
+
Your tasks include:
|
227 |
+
1. Analyzing compliance with applicable Ind AS or AS standards
|
228 |
+
2. Reviewing revenue recognition under Ind AS 115 or AS 9
|
229 |
+
3. Checking financial instrument accounting under Ind AS 109 or AS 30/31/32
|
230 |
+
4. Evaluating lease accounting under Ind AS 116 or AS 19
|
231 |
+
5. Reviewing impairment assessments under Ind AS 36 or AS 28
|
232 |
+
6. Analyzing consolidation requirements under Ind AS 110/111 or AS 21/23/27
|
233 |
+
7. Checking fair value measurements and disclosures under Ind AS 113
|
234 |
+
8. Ensuring proper segment reporting under Ind AS 108 or AS 17
|
235 |
+
9. Reviewing first-time adoption issues for Ind AS transition
|
236 |
+
|
237 |
+
Reference specific Indian accounting standards and consider MCA notifications and clarifications.
|
238 |
+
"""
|
239 |
+
|
240 |
+
REGULATORY_COMPLIANCE_PROMPT = """
|
241 |
+
You are a senior regulatory compliance expert specializing in Indian financial regulations and corporate law.
|
242 |
+
Your expertise covers Companies Act 2013, SEBI regulations, RBI guidelines, and other Indian regulatory frameworks.
|
243 |
+
Your responsibilities include:
|
244 |
+
1. Ensuring compliance with Companies Act 2013 provisions and rules
|
245 |
+
2. Verifying SEBI LODR (Listing Obligations and Disclosure Requirements) compliance
|
246 |
+
3. Checking RBI guidelines compliance (for applicable sectors)
|
247 |
+
4. Reviewing corporate governance disclosures as per Indian regulations
|
248 |
+
5. Analyzing CSR compliance and reporting under Section 135 of Companies Act
|
249 |
+
6. Verifying board composition and audit committee requirements
|
250 |
+
7. Checking compliance with insider trading regulations (SEBI PIT)
|
251 |
+
8. Reviewing related party transaction approvals and disclosures
|
252 |
+
9. Ensuring proper filing requirements with MCA and SEBI
|
253 |
+
10. Analyzing compliance with sectoral regulations (banking, insurance, etc.)
|
254 |
+
|
255 |
+
Focus on Indian regulatory environment and recent updates to regulations and compliance requirements.
|
256 |
+
"""
|
257 |
+
|
258 |
+
swarm_config = {
|
259 |
+
"name": "Indian Financial Compliance Assistant",
|
260 |
+
"description": "A specialized swarm for Indian financial regulatory compliance",
|
261 |
+
"agents": [
|
262 |
+
{
|
263 |
+
"agent_name": "Indian Documentation Analyzer",
|
264 |
+
"description": "Reviews financial statements for Indian compliance requirements",
|
265 |
+
"system_prompt": DOCUMENTATION_ANALYZER_PROMPT,
|
266 |
+
"model_name": "gpt-4o",
|
267 |
+
"role": "worker",
|
268 |
+
"max_loops": 1,
|
269 |
+
"max_tokens": 4096,
|
270 |
+
"temperature": 0.5,
|
271 |
+
"auto_generate_prompt": False,
|
272 |
+
},
|
273 |
+
{
|
274 |
+
"agent_name": "Indian Accounting Standards Expert",
|
275 |
+
"description": "Evaluates compliance with Ind AS/AS requirements",
|
276 |
+
"system_prompt": ACCOUNTING_STANDARDS_PROMPT,
|
277 |
+
"model_name": "gpt-4o",
|
278 |
+
"role": "worker",
|
279 |
+
"max_loops": 1,
|
280 |
+
"max_tokens": 4096,
|
281 |
+
"temperature": 0.5,
|
282 |
+
"auto_generate_prompt": False,
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"agent_name": "Indian Regulatory Compliance Specialist",
|
286 |
+
"description": "Assesses adherence to Indian regulatory frameworks",
|
287 |
+
"system_prompt": REGULATORY_COMPLIANCE_PROMPT,
|
288 |
+
"model_name": "gpt-4o",
|
289 |
+
"role": "worker",
|
290 |
+
"max_loops": 1,
|
291 |
+
"max_tokens": 4096,
|
292 |
+
"temperature": 0.5,
|
293 |
+
"auto_generate_prompt": False,
|
294 |
+
}
|
295 |
+
],
|
296 |
+
"max_loops": 1,
|
297 |
+
"swarm_type": "SequentialWorkflow",
|
298 |
+
"task": f"""
|
299 |
+
Analyze the following financial information for an Indian company ({company_info}) and provide a comprehensive compliance assessment according to Indian regulations:
|
300 |
+
|
301 |
+
{financial_data}
|
302 |
+
|
303 |
+
For your compliance evaluation, provide:
|
304 |
+
1. Assessment of compliance with Indian Accounting Standards (Ind AS/AS)
|
305 |
+
2. Analysis of Companies Act 2013 compliance requirements
|
306 |
+
3. Review of SEBI regulations compliance (if applicable)
|
307 |
+
4. Evaluation of corporate governance and disclosure requirements
|
308 |
+
5. Assessment of CSR and ESG reporting compliance
|
309 |
+
6. Identification of potential compliance risks specific to Indian regulations
|
310 |
+
7. Recommendations for improving compliance with Indian standards
|
311 |
+
|
312 |
+
Focus specifically on Indian regulatory framework and recent regulatory updates.
|
313 |
+
"""
|
314 |
+
}
|
315 |
+
|
316 |
+
return run_swarm(swarm_config)
|
317 |
+
|
318 |
+
def create_comprehensive_csv_data(data_source, company_info, accounting_standards, regulatory_frameworks, result):
|
319 |
+
"""Create comprehensive CSV data with all analysis information"""
|
320 |
+
|
321 |
+
# Extract company information
|
322 |
+
company_parts = company_info.split(" in the ")
|
323 |
+
company_type = company_parts[0] if len(company_parts) > 0 else "N/A"
|
324 |
+
industry_sector = company_parts[1].split(", classified as")[0] if len(company_parts) > 1 else "N/A"
|
325 |
+
company_size = company_parts[1].split("classified as ")[1].split(", for")[0] if len(company_parts) > 1 else "N/A"
|
326 |
+
financial_year = company_parts[1].split("for ")[-1] if len(company_parts) > 1 else "N/A"
|
327 |
+
|
328 |
+
# Create comprehensive data structure
|
329 |
+
comprehensive_data = []
|
330 |
+
|
331 |
+
# 1. Basic Information
|
332 |
+
comprehensive_data.append({
|
333 |
+
'Category': 'Basic Information',
|
334 |
+
'Field': 'Analysis Timestamp',
|
335 |
+
'Value': datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
|
336 |
+
'Details': 'Time when analysis was performed',
|
337 |
+
'Priority': '',
|
338 |
+
'Timeline': '',
|
339 |
+
'Regulation': ''
|
340 |
+
})
|
341 |
+
|
342 |
+
comprehensive_data.append({
|
343 |
+
'Category': 'Basic Information',
|
344 |
+
'Field': 'Data Source',
|
345 |
+
'Value': data_source,
|
346 |
+
'Details': 'Source of financial data used for analysis',
|
347 |
+
'Priority': '',
|
348 |
+
'Timeline': '',
|
349 |
+
'Regulation': ''
|
350 |
+
})
|
351 |
+
|
352 |
+
comprehensive_data.append({
|
353 |
+
'Category': 'Basic Information',
|
354 |
+
'Field': 'Company Type',
|
355 |
+
'Value': company_type,
|
356 |
+
'Details': 'Legal structure of the company',
|
357 |
+
'Priority': '',
|
358 |
+
'Timeline': '',
|
359 |
+
'Regulation': ''
|
360 |
+
})
|
361 |
+
|
362 |
+
comprehensive_data.append({
|
363 |
+
'Category': 'Basic Information',
|
364 |
+
'Field': 'Industry Sector',
|
365 |
+
'Value': industry_sector,
|
366 |
+
'Details': 'Primary business sector',
|
367 |
+
'Priority': '',
|
368 |
+
'Timeline': '',
|
369 |
+
'Regulation': ''
|
370 |
+
})
|
371 |
+
|
372 |
+
comprehensive_data.append({
|
373 |
+
'Category': 'Basic Information',
|
374 |
+
'Field': 'Company Size',
|
375 |
+
'Value': company_size,
|
376 |
+
'Details': 'Classification based on turnover and capital',
|
377 |
+
'Priority': '',
|
378 |
+
'Timeline': '',
|
379 |
+
'Regulation': ''
|
380 |
+
})
|
381 |
+
|
382 |
+
comprehensive_data.append({
|
383 |
+
'Category': 'Basic Information',
|
384 |
+
'Field': 'Financial Year',
|
385 |
+
'Value': financial_year,
|
386 |
+
'Details': 'Reporting period under analysis',
|
387 |
+
'Priority': '',
|
388 |
+
'Timeline': '',
|
389 |
+
'Regulation': ''
|
390 |
+
})
|
391 |
+
|
392 |
+
comprehensive_data.append({
|
393 |
+
'Category': 'Basic Information',
|
394 |
+
'Field': 'Accounting Standards',
|
395 |
+
'Value': accounting_standards,
|
396 |
+
'Details': 'Applicable accounting framework',
|
397 |
+
'Priority': '',
|
398 |
+
'Timeline': '',
|
399 |
+
'Regulation': ''
|
400 |
+
})
|
401 |
+
|
402 |
+
comprehensive_data.append({
|
403 |
+
'Category': 'Basic Information',
|
404 |
+
'Field': 'Regulatory Frameworks',
|
405 |
+
'Value': ', '.join(regulatory_frameworks),
|
406 |
+
'Details': 'Applicable regulatory requirements',
|
407 |
+
'Priority': '',
|
408 |
+
'Timeline': '',
|
409 |
+
'Regulation': ''
|
410 |
+
})
|
411 |
+
|
412 |
+
# 2. AI Analysis Results (if available)
|
413 |
+
if isinstance(result, dict) and 'response' in result:
|
414 |
+
comprehensive_data.append({
|
415 |
+
'Category': 'AI Analysis Results',
|
416 |
+
'Field': 'Full Analysis Response',
|
417 |
+
'Value': 'AI Generated Compliance Analysis',
|
418 |
+
'Details': result['response'][:1000] + '...' if len(result['response']) > 1000 else result['response'],
|
419 |
+
'Priority': '',
|
420 |
+
'Timeline': '',
|
421 |
+
'Regulation': ''
|
422 |
+
})
|
423 |
+
|
424 |
+
return pd.DataFrame(comprehensive_data)
|
425 |
+
|
426 |
+
def main():
|
427 |
+
st.set_page_config(
|
428 |
+
page_title="Indian Financial Compliance System",
|
429 |
+
page_icon="🇮🇳",
|
430 |
+
layout="wide",
|
431 |
+
initial_sidebar_state="expanded"
|
432 |
+
)
|
433 |
+
|
434 |
+
# Initialize data provider
|
435 |
+
if 'data_provider' not in st.session_state:
|
436 |
+
st.session_state.data_provider = IndianDataProvider()
|
437 |
+
|
438 |
+
# Header
|
439 |
+
st.title("🇮🇳 Indian Financial Compliance & Regulatory System")
|
440 |
+
st.markdown("AI-Powered Multi-Agent Financial Compliance Analysis for Indian Companies")
|
441 |
+
|
442 |
+
# Sidebar Configuration
|
443 |
+
with st.sidebar:
|
444 |
+
st.header("Configuration")
|
445 |
+
|
446 |
+
# API Key Check
|
447 |
+
if not API_KEY:
|
448 |
+
st.error("SWARMS_API_KEY not found in environment variables")
|
449 |
+
st.info("Please set your API key in the .env file")
|
450 |
+
return
|
451 |
+
else:
|
452 |
+
st.success("API Key configured")
|
453 |
+
|
454 |
+
st.divider()
|
455 |
+
|
456 |
+
# Data Source Selection
|
457 |
+
st.subheader("📊 Data Source")
|
458 |
+
data_source = st.selectbox(
|
459 |
+
"Choose Data Source",
|
460 |
+
[
|
461 |
+
"Manual Input",
|
462 |
+
"NSE Listed Company (Live Data)"
|
463 |
+
],
|
464 |
+
help="Select how you want to input financial data"
|
465 |
+
)
|
466 |
+
|
467 |
+
financial_data = ""
|
468 |
+
company_info_auto = ""
|
469 |
+
|
470 |
+
# Handle different data sources
|
471 |
+
if data_source == "NSE Listed Company (Live Data)":
|
472 |
+
st.subheader("🔍 NSE Stock Data")
|
473 |
+
|
474 |
+
# Popular Indian stocks for quick selection
|
475 |
+
popular_stocks = [
|
476 |
+
'ADANIENT', 'ADANIPORTS', 'APOLLOHOSP', 'ASIANPAINT',
|
477 |
+
'AXISBANK', 'BAJAJ-AUTO', 'BAJFINANCE', 'BAJAJFINSV',
|
478 |
+
'BEL', 'BHARTIARTL', 'CIPL', 'COALINDIA', 'DRREDDY',
|
479 |
+
'EICHERMOT', 'GRASIM', 'HCLTECH', 'HDFCBANK', 'HDFCLIFE',
|
480 |
+
'HEROMOTOCO', 'HINDALCO', 'HINDUNILVR', 'ICICIBANK',
|
481 |
+
'INDUSINDBK', 'INFY', 'ITC', 'JIOFIN', 'JSWSTEEL',
|
482 |
+
'KOTAKBANK', 'LT', 'M&M', 'MARUTI', 'NESTLEIND',
|
483 |
+
'NTPC', 'ONGC', 'POWERGRID', 'RELIANCE', 'SBILIFE',
|
484 |
+
'SHRIRAMFIN', 'SBIN', 'SUNPHARMA', 'TATACONSUM', 'TCS',
|
485 |
+
'TATAMOTORS', 'TATASTEEL', 'TECHM', 'TITAN', 'TRENT',
|
486 |
+
'ULTRACEMCO', 'WIPRO'
|
487 |
+
]
|
488 |
+
|
489 |
+
col1, col2 = st.columns(2)
|
490 |
+
with col1:
|
491 |
+
stock_symbol = st.selectbox(
|
492 |
+
"Popular NSE Stocks",
|
493 |
+
[""] + popular_stocks,
|
494 |
+
help="Select from popular stocks"
|
495 |
+
)
|
496 |
+
|
497 |
+
with col2:
|
498 |
+
custom_symbol = st.text_input(
|
499 |
+
"Enter Custom Symbol",
|
500 |
+
placeholder="e.g., WIPRO",
|
501 |
+
help="Enter NSE stock symbol"
|
502 |
+
)
|
503 |
+
|
504 |
+
# Use custom symbol if provided, otherwise use selected
|
505 |
+
symbol_to_fetch = custom_symbol.upper() if custom_symbol else stock_symbol
|
506 |
+
|
507 |
+
if symbol_to_fetch and st.button("🚀 Fetch Live NSE Data", type="primary"):
|
508 |
+
with st.spinner(f"Fetching live data for {symbol_to_fetch}..."):
|
509 |
+
stock_data = st.session_state.data_provider.get_nse_stock_data(symbol_to_fetch)
|
510 |
+
|
511 |
+
if stock_data.get('success'):
|
512 |
+
st.success(f"✅ Successfully fetched data for {symbol_to_fetch}")
|
513 |
+
financial_data = st.session_state.data_provider.format_stock_data_for_analysis(stock_data)
|
514 |
+
company_info_auto = f"NSE Listed Company - {stock_data['info'].get('longName', symbol_to_fetch)} in {stock_data['info'].get('sector', 'Unknown')} sector"
|
515 |
+
|
516 |
+
# Display quick preview with directly extracted metrics
|
517 |
+
with st.expander("📋 Data Preview"):
|
518 |
+
col_prev1, col_prev2 = st.columns(2)
|
519 |
+
with col_prev1:
|
520 |
+
st.metric("Market Cap", f"₹{stock_data['info'].get('marketCap', 0):,}")
|
521 |
+
st.metric("Current Price", f"₹{stock_data.get('current_price', 0):,.2f}")
|
522 |
+
with col_prev2:
|
523 |
+
st.metric("Revenue", f"₹{stock_data.get('total_revenue', 0):,.2f}")
|
524 |
+
st.metric("Net Income", f"₹{stock_data.get('net_income', 0):,.2f}")
|
525 |
+
|
526 |
+
# Show data source info
|
527 |
+
st.info(f"📊 Data Source: {stock_data.get('price_source', 'Unknown')}")
|
528 |
+
|
529 |
+
else:
|
530 |
+
st.error(f"❌ Failed to fetch data: {stock_data.get('error', 'Unknown error')}")
|
531 |
+
|
532 |
+
st.divider()
|
533 |
+
|
534 |
+
# Company Information (Auto-filled or Manual)
|
535 |
+
st.subheader("🏢 Company Information")
|
536 |
+
|
537 |
+
if company_info_auto:
|
538 |
+
st.info(f"Auto-detected: {company_info_auto}")
|
539 |
+
company_info = company_info_auto
|
540 |
+
else:
|
541 |
+
company_type = st.selectbox(
|
542 |
+
"Company Type",
|
543 |
+
[
|
544 |
+
"Public Limited Company",
|
545 |
+
"Private Limited Company",
|
546 |
+
"Listed Company",
|
547 |
+
"Unlisted Public Company",
|
548 |
+
"Small Company",
|
549 |
+
"One Person Company (OPC)",
|
550 |
+
"Section 8 Company (Non-Profit)",
|
551 |
+
"Government Company",
|
552 |
+
"Foreign Company"
|
553 |
+
]
|
554 |
+
)
|
555 |
+
|
556 |
+
industry = st.selectbox(
|
557 |
+
"Industry Sector",
|
558 |
+
[
|
559 |
+
"Information Technology",
|
560 |
+
"Banking & Financial Services",
|
561 |
+
"Pharmaceuticals",
|
562 |
+
"Automobile",
|
563 |
+
"Textiles",
|
564 |
+
"Steel & Metal",
|
565 |
+
"Oil & Gas",
|
566 |
+
"Telecommunications",
|
567 |
+
"Real Estate",
|
568 |
+
"Infrastructure",
|
569 |
+
"Consumer Goods",
|
570 |
+
"Healthcare",
|
571 |
+
"Education",
|
572 |
+
"Agriculture",
|
573 |
+
"Other"
|
574 |
+
]
|
575 |
+
)
|
576 |
+
|
577 |
+
company_size = st.selectbox(
|
578 |
+
"Company Size",
|
579 |
+
[
|
580 |
+
"Small Company (Turnover ≤ ₹20 Cr, Paid-up Capital ≤ ₹2 Cr)",
|
581 |
+
"Medium Company",
|
582 |
+
"Large Company",
|
583 |
+
"Listed Company",
|
584 |
+
"Multinational Company"
|
585 |
+
]
|
586 |
+
)
|
587 |
+
|
588 |
+
financial_year = st.selectbox(
|
589 |
+
"Financial Year",
|
590 |
+
["FY 2024-25", "FY 2023-24", "FY 2022-23", "FY 2021-22"]
|
591 |
+
)
|
592 |
+
|
593 |
+
company_info = f"{company_type} in the {industry} sector, classified as {company_size}, for {financial_year}"
|
594 |
+
|
595 |
+
# Applicable Standards
|
596 |
+
st.subheader("📋 Standards & Regulations")
|
597 |
+
|
598 |
+
accounting_standards = st.selectbox(
|
599 |
+
"Accounting Standards",
|
600 |
+
[
|
601 |
+
"Indian Accounting Standards (Ind AS)",
|
602 |
+
"Accounting Standards (AS) - Old GAAP",
|
603 |
+
"Both Ind AS and AS (Transition period)"
|
604 |
+
]
|
605 |
+
)
|
606 |
+
|
607 |
+
regulatory_frameworks = st.multiselect(
|
608 |
+
"Applicable Regulations",
|
609 |
+
[
|
610 |
+
"Companies Act 2013",
|
611 |
+
"SEBI LODR Regulations",
|
612 |
+
"SEBI ICDR Regulations",
|
613 |
+
"RBI Guidelines",
|
614 |
+
"FEMA Regulations",
|
615 |
+
"Income Tax Act 1961",
|
616 |
+
"GST Regulations",
|
617 |
+
"RERA (Real Estate)",
|
618 |
+
"Insurance Regulatory Act",
|
619 |
+
"Banking Regulation Act"
|
620 |
+
],
|
621 |
+
default=["Companies Act 2013"]
|
622 |
+
)
|
623 |
+
|
624 |
+
# Main Content Area
|
625 |
+
col1, col2 = st.columns([2, 1])
|
626 |
+
|
627 |
+
with col1:
|
628 |
+
st.subheader("📄 Financial Data Input")
|
629 |
+
|
630 |
+
if data_source == "Manual Input" or not financial_data:
|
631 |
+
# Manual input tabs
|
632 |
+
tab1, tab2 = st.tabs(["✍️ Text Input", "📁 File Upload"])
|
633 |
+
|
634 |
+
with tab1:
|
635 |
+
financial_data = st.text_area(
|
636 |
+
"Enter Financial Statements and Related Information",
|
637 |
+
value=financial_data,
|
638 |
+
height=400,
|
639 |
+
placeholder="""Enter your Indian financial data here, such as:
|
640 |
+
• Balance Sheet as per Schedule III of Companies Act 2013
|
641 |
+
• Statement of Profit & Loss
|
642 |
+
• Cash Flow Statement
|
643 |
+
• Statement of Changes in Equity
|
644 |
+
• Notes to Financial Statements
|
645 |
+
• Board's Report
|
646 |
+
• Management Discussion & Analysis (MD&A)
|
647 |
+
• Corporate Governance Report
|
648 |
+
• CSR Report
|
649 |
+
• Auditor's Report
|
650 |
+
• Internal Financial Control Report
|
651 |
+
• Related Party Transactions
|
652 |
+
• Segment Reporting (if applicable)
|
653 |
+
• Subsidiary/Associate company details"""
|
654 |
+
)
|
655 |
+
|
656 |
+
with tab2:
|
657 |
+
uploaded_file = st.file_uploader(
|
658 |
+
"Upload Financial Document",
|
659 |
+
type=['txt'],
|
660 |
+
help="Upload annual reports, financial statements, or compliance documents"
|
661 |
+
)
|
662 |
+
|
663 |
+
if uploaded_file is not None:
|
664 |
+
if uploaded_file.type == "text/plain":
|
665 |
+
financial_data = str(uploaded_file.read(), "utf-8")
|
666 |
+
st.success(f"✅ File uploaded: {uploaded_file.name}")
|
667 |
+
else:
|
668 |
+
# Display auto-fetched data with option to edit
|
669 |
+
with st.expander("📊 Auto-Fetched Financial Data (Click to view/edit)", expanded=False):
|
670 |
+
financial_data = st.text_area(
|
671 |
+
"Financial Data (Auto-fetched - you can edit if needed)",
|
672 |
+
value=financial_data,
|
673 |
+
height=300
|
674 |
+
)
|
675 |
+
|
676 |
+
st.info(f"✅ Using data from: {data_source}")
|
677 |
+
|
678 |
+
with col2:
|
679 |
+
st.subheader("📊 Analysis Dashboard")
|
680 |
+
|
681 |
+
# Quick metrics
|
682 |
+
if 'compliance_result' in st.session_state:
|
683 |
+
st.metric("Compliance Status", "Analyzed", "✓")
|
684 |
+
st.metric("Data Source", data_source)
|
685 |
+
st.metric("Analysis Count", len(st.session_state.get('analysis_history', [])))
|
686 |
+
else:
|
687 |
+
st.info("Analysis metrics will appear after running compliance check")
|
688 |
+
|
689 |
+
# Data source info
|
690 |
+
st.subheader("ℹ️ Current Configuration")
|
691 |
+
st.write(f"**Data Source:** {data_source}")
|
692 |
+
st.write(f"**Accounting Standards:** {accounting_standards}")
|
693 |
+
st.write(f"**Regulations:** {', '.join(regulatory_frameworks[:2])}{'...' if len(regulatory_frameworks) > 2 else ''}")
|
694 |
+
|
695 |
+
# Analysis History
|
696 |
+
st.subheader("📚 Recent Analyses")
|
697 |
+
if 'analysis_history' not in st.session_state:
|
698 |
+
st.session_state.analysis_history = []
|
699 |
+
|
700 |
+
if st.session_state.analysis_history:
|
701 |
+
for i, analysis in enumerate(st.session_state.analysis_history[-3:]):
|
702 |
+
with st.expander(f"Analysis {len(st.session_state.analysis_history) - i}"):
|
703 |
+
st.text(f"Date: {analysis['timestamp']}")
|
704 |
+
st.text(f"Source: {analysis['data_source']}")
|
705 |
+
st.text(f"Company: {analysis['company_info'][:50]}...")
|
706 |
+
st.text(f"Status: {analysis['status']}")
|
707 |
+
else:
|
708 |
+
st.info("No previous analyses")
|
709 |
+
|
710 |
+
# Analysis Controls
|
711 |
+
st.divider()
|
712 |
+
|
713 |
+
col_run, col_options = st.columns([1, 2])
|
714 |
+
|
715 |
+
with col_run:
|
716 |
+
run_analysis = st.button(
|
717 |
+
"🚀 Run Indian Compliance Analysis",
|
718 |
+
type="primary",
|
719 |
+
use_container_width=True,
|
720 |
+
disabled=not bool(financial_data.strip())
|
721 |
+
)
|
722 |
+
|
723 |
+
with col_options:
|
724 |
+
with st.expander("⚙️ Advanced Options"):
|
725 |
+
col_adv1, col_adv2 = st.columns(2)
|
726 |
+
with col_adv1:
|
727 |
+
focus_areas = st.multiselect(
|
728 |
+
"Focus Areas",
|
729 |
+
[
|
730 |
+
"Revenue Recognition (Ind AS 115)",
|
731 |
+
"Related Party Transactions",
|
732 |
+
"Corporate Social Responsibility",
|
733 |
+
"Board Governance",
|
734 |
+
"Audit Committee Compliance",
|
735 |
+
"Segment Reporting",
|
736 |
+
"Consolidation Requirements"
|
737 |
+
]
|
738 |
+
)
|
739 |
+
with col_adv2:
|
740 |
+
analysis_depth = st.selectbox(
|
741 |
+
"Analysis Depth",
|
742 |
+
["Standard", "Detailed", "Comprehensive"]
|
743 |
+
)
|
744 |
+
|
745 |
+
# Run Analysis
|
746 |
+
if run_analysis:
|
747 |
+
if not financial_data.strip():
|
748 |
+
st.error("⚠️ Please provide financial data to analyze")
|
749 |
+
return
|
750 |
+
|
751 |
+
with st.spinner("🔄 Running multi-agent Indian compliance analysis..."):
|
752 |
+
# Progress tracking
|
753 |
+
progress_bar = st.progress(0)
|
754 |
+
status_text = st.empty()
|
755 |
+
|
756 |
+
status_text.text("🤖 Initializing Indian compliance agents...")
|
757 |
+
progress_bar.progress(20)
|
758 |
+
time.sleep(1)
|
759 |
+
|
760 |
+
status_text.text("📋 Analyzing documentation compliance...")
|
761 |
+
progress_bar.progress(40)
|
762 |
+
time.sleep(1)
|
763 |
+
|
764 |
+
status_text.text("📊 Evaluating Indian accounting standards...")
|
765 |
+
progress_bar.progress(60)
|
766 |
+
time.sleep(1)
|
767 |
+
|
768 |
+
status_text.text("⚖️ Checking regulatory compliance...")
|
769 |
+
progress_bar.progress(80)
|
770 |
+
time.sleep(1)
|
771 |
+
|
772 |
+
# Run the analysis
|
773 |
+
result = create_indian_compliance_swarm(financial_data, company_info)
|
774 |
+
|
775 |
+
progress_bar.progress(100)
|
776 |
+
status_text.text("✅ Analysis complete!")
|
777 |
+
time.sleep(1)
|
778 |
+
|
779 |
+
# Clear progress indicators
|
780 |
+
progress_bar.empty()
|
781 |
+
status_text.empty()
|
782 |
+
|
783 |
+
# Store results
|
784 |
+
st.session_state.compliance_result = result
|
785 |
+
|
786 |
+
# Add to history
|
787 |
+
st.session_state.analysis_history.append({
|
788 |
+
'timestamp': datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
|
789 |
+
'data_source': data_source,
|
790 |
+
'company_info': company_info,
|
791 |
+
'status': 'Completed'
|
792 |
+
})
|
793 |
+
|
794 |
+
# Display Results
|
795 |
+
if 'compliance_result' in st.session_state:
|
796 |
+
st.divider()
|
797 |
+
st.header("📊 Indian Compliance Analysis Results")
|
798 |
+
|
799 |
+
result = st.session_state.compliance_result
|
800 |
+
|
801 |
+
if "error" in result:
|
802 |
+
st.error(f"❌ Analysis failed: {result['error']}")
|
803 |
+
return
|
804 |
+
|
805 |
+
# Results tabs
|
806 |
+
tab1, tab2, tab3 = st.tabs([
|
807 |
+
"📋 Executive Summary",
|
808 |
+
"🔍 Detailed Analysis",
|
809 |
+
"⚖️ Risk Assessment"
|
810 |
+
])
|
811 |
+
|
812 |
+
with tab1:
|
813 |
+
st.subheader("Executive Summary")
|
814 |
+
|
815 |
+
# Display actual API results
|
816 |
+
st.subheader("🤖 AI Analysis Output")
|
817 |
+
if isinstance(result, dict) and 'response' in result:
|
818 |
+
with st.container():
|
819 |
+
st.markdown("---")
|
820 |
+
st.write(result['response'])
|
821 |
+
else:
|
822 |
+
with st.expander("Raw API Response"):
|
823 |
+
st.json(result)
|
824 |
+
|
825 |
+
with tab2:
|
826 |
+
st.subheader("🔍 Detailed Agent Analysis")
|
827 |
+
|
828 |
+
agents = [
|
829 |
+
("📋", "Indian Documentation Analyzer", "Documentation compliance assessment"),
|
830 |
+
("📊", "Indian Accounting Standards Expert", "Accounting standards evaluation"),
|
831 |
+
("⚖️", "Indian Regulatory Compliance Specialist", "Regulatory compliance review")
|
832 |
+
]
|
833 |
+
|
834 |
+
for icon, agent, description in agents:
|
835 |
+
with st.expander(f"{icon} {agent} Results"):
|
836 |
+
st.write(f"**Agent:** {agent}")
|
837 |
+
st.write(f"**Focus:** {description}")
|
838 |
+
|
839 |
+
if "Documentation" in agent:
|
840 |
+
st.write("**Key Areas Reviewed:**")
|
841 |
+
st.write("• Annual report completeness assessment")
|
842 |
+
st.write("• Board report adequacy review")
|
843 |
+
st.write("• Mandatory disclosure verification")
|
844 |
+
st.write("• CSR reporting compliance")
|
845 |
+
elif "Accounting" in agent:
|
846 |
+
st.write("**Standards Evaluated:**")
|
847 |
+
st.write("• Ind AS/AS compliance evaluation")
|
848 |
+
st.write("• Revenue recognition analysis")
|
849 |
+
st.write("• Financial instrument accounting review")
|
850 |
+
st.write("• Consolidation requirements check")
|
851 |
+
else:
|
852 |
+
st.write("**Regulations Assessed:**")
|
853 |
+
st.write("• Companies Act 2013 compliance")
|
854 |
+
st.write("• SEBI regulation adherence")
|
855 |
+
st.write("• Corporate governance assessment")
|
856 |
+
st.write("• Filing requirements validation")
|
857 |
+
|
858 |
+
with tab3:
|
859 |
+
st.subheader("⚖️ Indian Regulatory Risk Assessment")
|
860 |
+
|
861 |
+
# Risk categories specific to Indian context
|
862 |
+
risk_data = {
|
863 |
+
'Risk Area': [
|
864 |
+
'Companies Act Compliance',
|
865 |
+
'Ind AS Implementation',
|
866 |
+
'SEBI Regulations',
|
867 |
+
'CSR Compliance',
|
868 |
+
'Corporate Governance',
|
869 |
+
'Tax Compliance'
|
870 |
+
],
|
871 |
+
'Risk Level': ['Medium', 'Low', 'Medium', 'High', 'Low', 'Medium'],
|
872 |
+
'Impact Score': [7, 4, 6, 9, 3, 5],
|
873 |
+
'Likelihood Score': [5, 3, 6, 8, 2, 4]
|
874 |
+
}
|
875 |
+
|
876 |
+
df_risk = pd.DataFrame(risk_data)
|
877 |
+
|
878 |
+
# Risk matrix visualization
|
879 |
+
fig = px.scatter(
|
880 |
+
df_risk,
|
881 |
+
x='Impact Score',
|
882 |
+
y='Likelihood Score',
|
883 |
+
color='Risk Level',
|
884 |
+
size='Impact Score',
|
885 |
+
hover_data=['Risk Area'],
|
886 |
+
title="Indian Regulatory Risk Matrix",
|
887 |
+
color_discrete_map={'High': '#FF6B6B', 'Medium': '#FFD93D', 'Low': '#6BCF7F'},
|
888 |
+
labels={'Impact Score': 'Impact →', 'Likelihood Score': 'Likelihood →'}
|
889 |
+
)
|
890 |
+
|
891 |
+
fig.update_layout(
|
892 |
+
xaxis_range=[0, 10],
|
893 |
+
yaxis_range=[0, 10],
|
894 |
+
height=500
|
895 |
+
)
|
896 |
+
|
897 |
+
st.plotly_chart(fig, use_container_width=True)
|
898 |
+
|
899 |
+
st.subheader("📊 Risk Summary Table")
|
900 |
+
st.dataframe(df_risk, use_container_width=True)
|
901 |
+
|
902 |
+
# Export functionality
|
903 |
+
st.divider()
|
904 |
+
st.subheader("📤 Export Results")
|
905 |
+
|
906 |
+
col_exp1, col_exp2 = st.columns(2)
|
907 |
+
|
908 |
+
with col_exp1:
|
909 |
+
# Create comprehensive CSV data
|
910 |
+
comprehensive_df = create_comprehensive_csv_data(
|
911 |
+
data_source, company_info, accounting_standards, regulatory_frameworks, result
|
912 |
+
)
|
913 |
+
csv_data = comprehensive_df.to_csv(index=False)
|
914 |
+
|
915 |
+
st.download_button(
|
916 |
+
"📋 Download Analysis CSV",
|
917 |
+
data=csv_data,
|
918 |
+
file_name=f"compliance_analysis_{datetime.now().strftime('%Y%m%d_%H%M%S')}.csv",
|
919 |
+
mime="text/csv"
|
920 |
+
)
|
921 |
+
|
922 |
+
# Show preview of CSV data
|
923 |
+
with st.expander("📊 CSV Data Preview"):
|
924 |
+
st.dataframe(comprehensive_df, use_container_width=True, height=300)
|
925 |
+
|
926 |
+
with col_exp2:
|
927 |
+
json_result = json.dumps(result, indent=2)
|
928 |
+
st.download_button(
|
929 |
+
"💾 Download JSON",
|
930 |
+
data=json_result,
|
931 |
+
file_name=f"indian_compliance_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json",
|
932 |
+
mime="application/json"
|
933 |
+
)
|
934 |
+
|
935 |
+
if __name__ == "__main__":
|
936 |
+
main()
|