Spaces:
Running
Running
luanpoppe
commited on
Commit
·
dc376b6
1
Parent(s):
9ef64c5
feat: refatorações e melhorias gerais
Browse files- _utils/LLMs/LLM_class.py +4 -6
- _utils/gerar_relatorio_modelo_usuario/{EnhancedDocumentSummarizer.py → GerarDocumento.py} +75 -59
- _utils/gerar_relatorio_modelo_usuario/utils.py +1 -1
- _utils/ragas.py +4 -4
- _utils/resumo_completo_cursor.py +4 -4
- gerar_documento/serializer.py +3 -1
- tests/LLMs/test_LLM_class.py +35 -0
_utils/LLMs/LLM_class.py
CHANGED
|
@@ -1,6 +1,4 @@
|
|
| 1 |
-
# from langchain_openai import OpenAI
|
| 2 |
from typing import cast
|
| 3 |
-
from openai import OpenAI
|
| 4 |
from pydantic import SecretStr
|
| 5 |
from setup.environment import default_model
|
| 6 |
from setup.easy_imports import ChatOpenAI, ChatGoogleGenerativeAI
|
|
@@ -17,17 +15,17 @@ class LLM:
|
|
| 17 |
# def create_GPT_model(self, model=default_model):
|
| 18 |
# return ChatOpen()
|
| 19 |
|
| 20 |
-
def deepseek(self):
|
| 21 |
return ChatOpenAI(
|
| 22 |
api_key=SecretStr(deepseek_api_key),
|
| 23 |
base_url="https://api.deepseek.com/v1",
|
| 24 |
-
model=
|
| 25 |
)
|
| 26 |
|
| 27 |
-
def
|
| 28 |
return ChatGoogleGenerativeAI(
|
| 29 |
api_key=SecretStr(google_api_key),
|
| 30 |
-
model=
|
| 31 |
temperature=0,
|
| 32 |
max_tokens=None,
|
| 33 |
timeout=None,
|
|
|
|
|
|
|
| 1 |
from typing import cast
|
|
|
|
| 2 |
from pydantic import SecretStr
|
| 3 |
from setup.environment import default_model
|
| 4 |
from setup.easy_imports import ChatOpenAI, ChatGoogleGenerativeAI
|
|
|
|
| 15 |
# def create_GPT_model(self, model=default_model):
|
| 16 |
# return ChatOpen()
|
| 17 |
|
| 18 |
+
def deepseek(self, model="deepseek-chat"):
|
| 19 |
return ChatOpenAI(
|
| 20 |
api_key=SecretStr(deepseek_api_key),
|
| 21 |
base_url="https://api.deepseek.com/v1",
|
| 22 |
+
model=model,
|
| 23 |
)
|
| 24 |
|
| 25 |
+
def google_gemini(self, model="gemini-1.5-flash"):
|
| 26 |
return ChatGoogleGenerativeAI(
|
| 27 |
api_key=SecretStr(google_api_key),
|
| 28 |
+
model=model,
|
| 29 |
temperature=0,
|
| 30 |
max_tokens=None,
|
| 31 |
timeout=None,
|
_utils/gerar_relatorio_modelo_usuario/{EnhancedDocumentSummarizer.py → GerarDocumento.py}
RENAMED
|
@@ -10,23 +10,23 @@ from setup.easy_imports import (
|
|
| 10 |
PromptTemplate,
|
| 11 |
BM25Okapi,
|
| 12 |
Response,
|
|
|
|
| 13 |
)
|
| 14 |
import logging
|
| 15 |
-
import requests
|
| 16 |
from _utils.gerar_relatorio_modelo_usuario.DocumentSummarizer_simples import (
|
| 17 |
DocumentSummarizer,
|
| 18 |
)
|
| 19 |
from _utils.models.gerar_relatorio import (
|
| 20 |
RetrievalConfig,
|
| 21 |
)
|
| 22 |
-
from
|
| 23 |
-
from
|
| 24 |
|
| 25 |
-
from asgiref.sync import sync_to_async
|
| 26 |
|
| 27 |
-
|
| 28 |
-
class EnhancedDocumentSummarizer(DocumentSummarizer):
|
| 29 |
openai_api_key = os.environ.get("OPENAI_API_KEY", "")
|
|
|
|
|
|
|
| 30 |
|
| 31 |
def __init__(
|
| 32 |
self,
|
|
@@ -43,15 +43,6 @@ class EnhancedDocumentSummarizer(DocumentSummarizer):
|
|
| 43 |
prompt_gerar_documento,
|
| 44 |
reciprocal_rank_fusion,
|
| 45 |
):
|
| 46 |
-
super().__init__(
|
| 47 |
-
self.openai_api_key,
|
| 48 |
-
os.environ.get("COHERE_API_KEY", ""),
|
| 49 |
-
embedding_model,
|
| 50 |
-
chunk_size,
|
| 51 |
-
chunk_overlap,
|
| 52 |
-
num_k_rerank,
|
| 53 |
-
model_cohere_rerank,
|
| 54 |
-
)
|
| 55 |
self.config = config
|
| 56 |
self.logger = logging.getLogger(__name__)
|
| 57 |
self.prompt_auxiliar = prompt_auxiliar
|
|
@@ -59,7 +50,13 @@ class EnhancedDocumentSummarizer(DocumentSummarizer):
|
|
| 59 |
self.gpt_temperature = gpt_temperature
|
| 60 |
self.prompt_gerar_documento = prompt_gerar_documento
|
| 61 |
self.reciprocal_rank_fusion = reciprocal_rank_fusion
|
| 62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
|
| 64 |
self.vector_store = VectorStore(embedding_model)
|
| 65 |
|
|
@@ -114,56 +111,73 @@ class EnhancedDocumentSummarizer(DocumentSummarizer):
|
|
| 114 |
self.logger.error(f"Error in rank fusion retrieval: {str(e)}")
|
| 115 |
raise
|
| 116 |
|
| 117 |
-
|
| 118 |
self,
|
| 119 |
vector_store: Chroma,
|
| 120 |
bm25: BM25Okapi,
|
| 121 |
chunk_ids: List[str],
|
| 122 |
-
llm_ultimas_requests: str,
|
| 123 |
query: str = "Summarize the main points of this document",
|
| 124 |
-
)
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 130 |
)
|
| 131 |
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 140 |
)
|
| 141 |
|
| 142 |
-
|
| 143 |
-
context = results["documents"][0]
|
| 144 |
-
metadata = results["metadatas"][0]
|
| 145 |
-
|
| 146 |
-
contexts.append(context)
|
| 147 |
-
sources.append(
|
| 148 |
-
{
|
| 149 |
-
"content": context,
|
| 150 |
-
"page": metadata["page"],
|
| 151 |
-
"chunk_id": chunk_id,
|
| 152 |
-
"relevance_score": score,
|
| 153 |
-
"context": metadata.get("context", ""),
|
| 154 |
-
}
|
| 155 |
-
)
|
| 156 |
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 166 |
|
|
|
|
| 167 |
prompt_auxiliar = PromptTemplate(
|
| 168 |
template=self.prompt_auxiliar, input_variables=["context"]
|
| 169 |
)
|
|
@@ -176,21 +190,23 @@ class EnhancedDocumentSummarizer(DocumentSummarizer):
|
|
| 176 |
|
| 177 |
prompt_gerar_documento = PromptTemplate(
|
| 178 |
template=self.prompt_gerar_documento,
|
| 179 |
-
input_variables=["context"],
|
| 180 |
)
|
| 181 |
|
| 182 |
-
|
| 183 |
str,
|
| 184 |
llm.invoke(
|
| 185 |
prompt_gerar_documento.format(
|
| 186 |
-
|
| 187 |
-
|
| 188 |
)
|
| 189 |
).content,
|
| 190 |
)
|
| 191 |
|
| 192 |
# Split the response into paragraphs
|
| 193 |
-
summaries = [
|
|
|
|
|
|
|
| 194 |
|
| 195 |
# Create structured output
|
| 196 |
structured_output = []
|
|
|
|
| 10 |
PromptTemplate,
|
| 11 |
BM25Okapi,
|
| 12 |
Response,
|
| 13 |
+
HuggingFaceEmbeddings,
|
| 14 |
)
|
| 15 |
import logging
|
|
|
|
| 16 |
from _utils.gerar_relatorio_modelo_usuario.DocumentSummarizer_simples import (
|
| 17 |
DocumentSummarizer,
|
| 18 |
)
|
| 19 |
from _utils.models.gerar_relatorio import (
|
| 20 |
RetrievalConfig,
|
| 21 |
)
|
| 22 |
+
from cohere import Client
|
| 23 |
+
from _utils.splitters.Splitter_class import Splitter
|
| 24 |
|
|
|
|
| 25 |
|
| 26 |
+
class GerarDocumento:
|
|
|
|
| 27 |
openai_api_key = os.environ.get("OPENAI_API_KEY", "")
|
| 28 |
+
cohere_api_key = os.environ.get("COHERE_API_KEY", "")
|
| 29 |
+
resumo_gerado = ""
|
| 30 |
|
| 31 |
def __init__(
|
| 32 |
self,
|
|
|
|
| 43 |
prompt_gerar_documento,
|
| 44 |
reciprocal_rank_fusion,
|
| 45 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
self.config = config
|
| 47 |
self.logger = logging.getLogger(__name__)
|
| 48 |
self.prompt_auxiliar = prompt_auxiliar
|
|
|
|
| 50 |
self.gpt_temperature = gpt_temperature
|
| 51 |
self.prompt_gerar_documento = prompt_gerar_documento
|
| 52 |
self.reciprocal_rank_fusion = reciprocal_rank_fusion
|
| 53 |
+
|
| 54 |
+
self.openai_api_key = self.openai_api_key
|
| 55 |
+
self.cohere_client = Client(self.cohere_api_key)
|
| 56 |
+
self.embeddings = HuggingFaceEmbeddings(model_name=embedding_model)
|
| 57 |
+
self.num_k_rerank = num_k_rerank
|
| 58 |
+
self.model_cohere_rerank = model_cohere_rerank
|
| 59 |
+
self.splitter = Splitter(chunk_size, chunk_overlap)
|
| 60 |
|
| 61 |
self.vector_store = VectorStore(embedding_model)
|
| 62 |
|
|
|
|
| 111 |
self.logger.error(f"Error in rank fusion retrieval: {str(e)}")
|
| 112 |
raise
|
| 113 |
|
| 114 |
+
def rank_fusion_get_top_results(
|
| 115 |
self,
|
| 116 |
vector_store: Chroma,
|
| 117 |
bm25: BM25Okapi,
|
| 118 |
chunk_ids: List[str],
|
|
|
|
| 119 |
query: str = "Summarize the main points of this document",
|
| 120 |
+
):
|
| 121 |
+
# Get combined results using rank fusion
|
| 122 |
+
ranked_results = self.retrieve_with_rank_fusion(
|
| 123 |
+
vector_store, bm25, chunk_ids, query
|
| 124 |
+
)
|
| 125 |
+
|
| 126 |
+
# Prepare context and track sources
|
| 127 |
+
contexts = []
|
| 128 |
+
sources = []
|
| 129 |
+
|
| 130 |
+
# Get full documents for top results
|
| 131 |
+
for chunk_id, score in ranked_results[: self.config.num_chunks]:
|
| 132 |
+
results = vector_store.get(
|
| 133 |
+
where={"chunk_id": chunk_id}, include=["documents", "metadatas"]
|
| 134 |
)
|
| 135 |
|
| 136 |
+
if results["documents"]:
|
| 137 |
+
context = results["documents"][0]
|
| 138 |
+
metadata = results["metadatas"][0]
|
| 139 |
|
| 140 |
+
contexts.append(context)
|
| 141 |
+
sources.append(
|
| 142 |
+
{
|
| 143 |
+
"content": context,
|
| 144 |
+
"page": metadata["page"],
|
| 145 |
+
"chunk_id": chunk_id,
|
| 146 |
+
"relevance_score": score,
|
| 147 |
+
"context": metadata.get("context", ""),
|
| 148 |
+
}
|
| 149 |
)
|
| 150 |
|
| 151 |
+
return sources, contexts
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 152 |
|
| 153 |
+
def select_model_for_last_requests(self, llm_ultimas_requests: str):
|
| 154 |
+
llm_instance = LLM()
|
| 155 |
+
if llm_ultimas_requests == "gpt-4o-mini":
|
| 156 |
+
llm = ChatOpenAI(
|
| 157 |
+
temperature=self.gpt_temperature,
|
| 158 |
+
model=self.gpt_model,
|
| 159 |
+
api_key=SecretStr(self.openai_api_key),
|
| 160 |
+
)
|
| 161 |
+
elif llm_ultimas_requests == "deepseek-chat":
|
| 162 |
+
llm = llm_instance.deepseek()
|
| 163 |
+
elif llm_ultimas_requests == "gemini-2.0-flash":
|
| 164 |
+
llm = llm_instance.google_gemini("gemini-2.0-flash")
|
| 165 |
+
return llm
|
| 166 |
+
|
| 167 |
+
async def gerar_documento_final(
|
| 168 |
+
self,
|
| 169 |
+
vector_store: Chroma,
|
| 170 |
+
bm25: BM25Okapi,
|
| 171 |
+
chunk_ids: List[str],
|
| 172 |
+
llm_ultimas_requests: str,
|
| 173 |
+
query: str = "Summarize the main points of this document",
|
| 174 |
+
) -> List[Dict]:
|
| 175 |
+
try:
|
| 176 |
+
sources, contexts = self.rank_fusion_get_top_results(
|
| 177 |
+
vector_store, bm25, chunk_ids, query
|
| 178 |
+
)
|
| 179 |
|
| 180 |
+
llm = self.select_model_for_last_requests(llm_ultimas_requests)
|
| 181 |
prompt_auxiliar = PromptTemplate(
|
| 182 |
template=self.prompt_auxiliar, input_variables=["context"]
|
| 183 |
)
|
|
|
|
| 190 |
|
| 191 |
prompt_gerar_documento = PromptTemplate(
|
| 192 |
template=self.prompt_gerar_documento,
|
| 193 |
+
input_variables=["documento_gerado", "context"],
|
| 194 |
)
|
| 195 |
|
| 196 |
+
documento_gerado_final = cast(
|
| 197 |
str,
|
| 198 |
llm.invoke(
|
| 199 |
prompt_gerar_documento.format(
|
| 200 |
+
documento_gerado=self.resumo_gerado,
|
| 201 |
+
context="\n\n".join(contexts),
|
| 202 |
)
|
| 203 |
).content,
|
| 204 |
)
|
| 205 |
|
| 206 |
# Split the response into paragraphs
|
| 207 |
+
summaries = [
|
| 208 |
+
p.strip() for p in documento_gerado_final.split("\n\n") if p.strip()
|
| 209 |
+
]
|
| 210 |
|
| 211 |
# Create structured output
|
| 212 |
structured_output = []
|
_utils/gerar_relatorio_modelo_usuario/utils.py
CHANGED
|
@@ -82,7 +82,7 @@ async def get_response_from_auxiliar_contextual_prompt(full_text_as_array: List[
|
|
| 82 |
# )
|
| 83 |
|
| 84 |
llms = LLM()
|
| 85 |
-
response_auxiliar_summary = await llms.
|
| 86 |
[HumanMessage(content=prompt_auxiliar_summary)]
|
| 87 |
)
|
| 88 |
|
|
|
|
| 82 |
# )
|
| 83 |
|
| 84 |
llms = LLM()
|
| 85 |
+
response_auxiliar_summary = await llms.google_gemini().ainvoke(
|
| 86 |
[HumanMessage(content=prompt_auxiliar_summary)]
|
| 87 |
)
|
| 88 |
|
_utils/ragas.py
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
import os
|
| 2 |
from langchain_community.document_loaders import PyPDFLoader
|
| 3 |
-
from _utils.resumo_completo_cursor import
|
| 4 |
from rest_framework.response import Response
|
| 5 |
from ragas import evaluate
|
| 6 |
|
|
@@ -13,7 +13,7 @@ from langchain.memory import SimpleMemory
|
|
| 13 |
|
| 14 |
def test_ragas(serializer, listaPDFs):
|
| 15 |
|
| 16 |
-
# Step 2: Setup RetrievalConfig and
|
| 17 |
config = RetrievalConfig(
|
| 18 |
num_chunks=serializer["num_chunks_retrieval"],
|
| 19 |
embedding_weight=serializer["embedding_weight"],
|
|
@@ -22,7 +22,7 @@ def test_ragas(serializer, listaPDFs):
|
|
| 22 |
chunk_overlap=serializer["chunk_overlap"],
|
| 23 |
)
|
| 24 |
|
| 25 |
-
summarizer =
|
| 26 |
openai_api_key=os.environ.get("OPENAI_API_KEY"),
|
| 27 |
claude_api_key=os.environ.get("CLAUDE_API_KEY"),
|
| 28 |
config=config,
|
|
@@ -74,7 +74,7 @@ def test_ragas(serializer, listaPDFs):
|
|
| 74 |
|
| 75 |
def generate_summary(vector_store, bm25, chunk_ids, query, summarizer):
|
| 76 |
"""Generates an enhanced summary using the vector store and BM25 index."""
|
| 77 |
-
structured_summaries = summarizer.
|
| 78 |
vector_store, bm25, chunk_ids, query
|
| 79 |
)
|
| 80 |
return {"structured_summaries": structured_summaries}
|
|
|
|
| 1 |
import os
|
| 2 |
from langchain_community.document_loaders import PyPDFLoader
|
| 3 |
+
from _utils.resumo_completo_cursor import GerarDocumento, RetrievalConfig
|
| 4 |
from rest_framework.response import Response
|
| 5 |
from ragas import evaluate
|
| 6 |
|
|
|
|
| 13 |
|
| 14 |
def test_ragas(serializer, listaPDFs):
|
| 15 |
|
| 16 |
+
# Step 2: Setup RetrievalConfig and GerarDocumento
|
| 17 |
config = RetrievalConfig(
|
| 18 |
num_chunks=serializer["num_chunks_retrieval"],
|
| 19 |
embedding_weight=serializer["embedding_weight"],
|
|
|
|
| 22 |
chunk_overlap=serializer["chunk_overlap"],
|
| 23 |
)
|
| 24 |
|
| 25 |
+
summarizer = GerarDocumento(
|
| 26 |
openai_api_key=os.environ.get("OPENAI_API_KEY"),
|
| 27 |
claude_api_key=os.environ.get("CLAUDE_API_KEY"),
|
| 28 |
config=config,
|
|
|
|
| 74 |
|
| 75 |
def generate_summary(vector_store, bm25, chunk_ids, query, summarizer):
|
| 76 |
"""Generates an enhanced summary using the vector store and BM25 index."""
|
| 77 |
+
structured_summaries = summarizer.gerar_documento_final(
|
| 78 |
vector_store, bm25, chunk_ids, query
|
| 79 |
)
|
| 80 |
return {"structured_summaries": structured_summaries}
|
_utils/resumo_completo_cursor.py
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
import os
|
| 2 |
from _utils.gerar_relatorio_modelo_usuario.prompts import prompt_auxiliar_SEM_CONTEXT
|
| 3 |
-
from _utils.gerar_relatorio_modelo_usuario.
|
| 4 |
-
|
| 5 |
)
|
| 6 |
from _utils.gerar_relatorio_modelo_usuario.contextual_retriever import (
|
| 7 |
ContextualRetriever,
|
|
@@ -59,7 +59,7 @@ async def get_llm_summary_answer_by_cursor_complete(
|
|
| 59 |
)
|
| 60 |
|
| 61 |
# Initialize enhanced summarizer
|
| 62 |
-
summarizer =
|
| 63 |
config=config,
|
| 64 |
embedding_model=serializer["hf_embedding"],
|
| 65 |
chunk_overlap=serializer["chunk_overlap"],
|
|
@@ -100,7 +100,7 @@ async def get_llm_summary_answer_by_cursor_complete(
|
|
| 100 |
|
| 101 |
llm_ultimas_requests = serializer["llm_ultimas_requests"]
|
| 102 |
# Generate enhanced summary
|
| 103 |
-
structured_summaries = await summarizer.
|
| 104 |
vector_store, bm25, chunk_ids, llm_ultimas_requests, prompt_auxiliar_SEM_CONTEXT
|
| 105 |
)
|
| 106 |
|
|
|
|
| 1 |
import os
|
| 2 |
from _utils.gerar_relatorio_modelo_usuario.prompts import prompt_auxiliar_SEM_CONTEXT
|
| 3 |
+
from _utils.gerar_relatorio_modelo_usuario.GerarDocumento import (
|
| 4 |
+
GerarDocumento,
|
| 5 |
)
|
| 6 |
from _utils.gerar_relatorio_modelo_usuario.contextual_retriever import (
|
| 7 |
ContextualRetriever,
|
|
|
|
| 59 |
)
|
| 60 |
|
| 61 |
# Initialize enhanced summarizer
|
| 62 |
+
summarizer = GerarDocumento(
|
| 63 |
config=config,
|
| 64 |
embedding_model=serializer["hf_embedding"],
|
| 65 |
chunk_overlap=serializer["chunk_overlap"],
|
|
|
|
| 100 |
|
| 101 |
llm_ultimas_requests = serializer["llm_ultimas_requests"]
|
| 102 |
# Generate enhanced summary
|
| 103 |
+
structured_summaries = await summarizer.gerar_documento_final(
|
| 104 |
vector_store, bm25, chunk_ids, llm_ultimas_requests, prompt_auxiliar_SEM_CONTEXT
|
| 105 |
)
|
| 106 |
|
gerar_documento/serializer.py
CHANGED
|
@@ -46,7 +46,9 @@ class GerarDocumentoSerializer(ResumoCursorSerializer):
|
|
| 46 |
id_modelo_do_usuario = serializers.IntegerField(required=False)
|
| 47 |
should_have_contextual_chunks = serializers.BooleanField(default=False) # type: ignore
|
| 48 |
should_use_llama_parse = serializers.BooleanField(required=False, default=False) # type: ignore
|
| 49 |
-
llm_ultimas_requests = serializers.CharField(
|
|
|
|
|
|
|
| 50 |
|
| 51 |
|
| 52 |
class GerarDocumentoComPDFProprioSerializer(ResumoCursorSerializer):
|
|
|
|
| 46 |
id_modelo_do_usuario = serializers.IntegerField(required=False)
|
| 47 |
should_have_contextual_chunks = serializers.BooleanField(default=False) # type: ignore
|
| 48 |
should_use_llama_parse = serializers.BooleanField(required=False, default=False) # type: ignore
|
| 49 |
+
llm_ultimas_requests = serializers.CharField(
|
| 50 |
+
required=False, default="gemini-2.0-flash"
|
| 51 |
+
)
|
| 52 |
|
| 53 |
|
| 54 |
class GerarDocumentoComPDFProprioSerializer(ResumoCursorSerializer):
|
tests/LLMs/test_LLM_class.py
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pytest
|
| 2 |
+
import os
|
| 3 |
+
from _utils.LLMs.LLM_class import LLM
|
| 4 |
+
from _utils.splitters.Splitter_class import Splitter
|
| 5 |
+
from _utils.models.gerar_relatorio import (
|
| 6 |
+
DocumentChunk,
|
| 7 |
+
)
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
class TestSplitters:
|
| 11 |
+
llm = LLM()
|
| 12 |
+
|
| 13 |
+
@pytest.mark.asyncio
|
| 14 |
+
async def test_google_gemini_modelo_padrao(self, monkeypatch):
|
| 15 |
+
gemini = self.llm.google_gemini()
|
| 16 |
+
result = gemini.invoke("Qual a capital do Brasil?").content
|
| 17 |
+
|
| 18 |
+
assert isinstance(result, str)
|
| 19 |
+
assert len(result) > 0
|
| 20 |
+
|
| 21 |
+
@pytest.mark.asyncio
|
| 22 |
+
async def test_google_gemini_modelo_flash_2(self, monkeypatch):
|
| 23 |
+
gemini = self.llm.google_gemini("gemini-2.0-flash")
|
| 24 |
+
result = gemini.invoke("Qual a capital do Brasil?").content
|
| 25 |
+
|
| 26 |
+
assert isinstance(result, str)
|
| 27 |
+
assert len(result) > 0
|
| 28 |
+
|
| 29 |
+
@pytest.mark.asyncio
|
| 30 |
+
async def test_deepseek_modelo_padrao(self, monkeypatch):
|
| 31 |
+
deepseek = self.llm.deepseek()
|
| 32 |
+
result = deepseek.invoke("Qual a capital do Brasil?").content
|
| 33 |
+
|
| 34 |
+
assert isinstance(result, str)
|
| 35 |
+
assert len(result) > 0
|