Spaces:
Running
Running
luanpoppe
feat: adicionando possibilidade de requisição com gemini, adicionando possibilidade de requsição com deepseek, colocando como padrão não utilizar o llama parse, mudar o padrão para realizar poucas requisições do contextual e lidar com as respostas contendo vários chunks de uma vez só
e70ffc1
import os | |
from _utils.gerar_relatorio_modelo_usuario.prompts import prompt_auxiliar_SEM_CONTEXT | |
from _utils.gerar_relatorio_modelo_usuario.EnhancedDocumentSummarizer import ( | |
EnhancedDocumentSummarizer, | |
) | |
from _utils.gerar_relatorio_modelo_usuario.contextual_retriever import ( | |
contextualize_chunk_based_on_serializer, | |
get_full_text_and_all_PDFs_chunks, | |
) | |
from _utils.gerar_relatorio_modelo_usuario.utils import gerar_resposta_compilada | |
from _utils.models.gerar_relatorio import ( | |
RetrievalConfig, | |
) | |
def reciprocal_rank_fusion(result_lists, weights=None): | |
"""Combine multiple ranked lists using reciprocal rank fusion""" | |
fused_scores = {} | |
num_lists = len(result_lists) | |
if weights is None: | |
weights = [1.0] * num_lists | |
for i in range(num_lists): | |
for doc_id, score in result_lists[i]: | |
if doc_id not in fused_scores: | |
fused_scores[doc_id] = 0 | |
fused_scores[doc_id] += weights[i] * score | |
# Sort by score in descending order | |
sorted_results = sorted(fused_scores.items(), key=lambda x: x[1], reverse=True) | |
return sorted_results | |
os.environ["LANGCHAIN_TRACING_V2"] = "true" | |
os.environ["LANGCHAIN_ENDPOINT"] = "https://api.smith.langchain.com" | |
os.environ.get("LANGCHAIN_API_KEY") | |
os.environ["LANGCHAIN_PROJECT"] = "VELLA" | |
async def get_llm_summary_answer_by_cursor_complete(serializer, listaPDFs=None): | |
"""Parâmetro "contexto" só deve ser passado quando quiser utilizar o teste com ragas, e assim, não quiser passar PDFs""" | |
# Configuration | |
config = RetrievalConfig( | |
num_chunks=serializer["num_chunks_retrieval"], | |
embedding_weight=serializer["embedding_weight"], | |
bm25_weight=serializer["bm25_weight"], | |
context_window=serializer["context_window"], | |
chunk_overlap=serializer["chunk_overlap"], | |
) | |
# Initialize enhanced summarizer | |
summarizer = EnhancedDocumentSummarizer( | |
openai_api_key=os.environ.get("OPENAI_API_KEY"), | |
claude_api_key=os.environ.get("CLAUDE_API_KEY"), | |
config=config, | |
embedding_model=serializer["hf_embedding"], | |
chunk_overlap=serializer["chunk_overlap"], | |
chunk_size=serializer["chunk_size"], | |
num_k_rerank=serializer["num_k_rerank"], | |
model_cohere_rerank=serializer["model_cohere_rerank"], | |
claude_context_model=serializer["claude_context_model"], | |
prompt_auxiliar=serializer["prompt_auxiliar"], | |
gpt_model=serializer["model"], | |
gpt_temperature=serializer["gpt_temperature"], | |
# id_modelo_do_usuario=serializer["id_modelo_do_usuario"], | |
prompt_gerar_documento=serializer["prompt_gerar_documento"], | |
reciprocal_rank_fusion=reciprocal_rank_fusion, | |
) | |
allPdfsChunks, pages = await get_full_text_and_all_PDFs_chunks( | |
listaPDFs, summarizer.splitter, serializer["should_use_llama_parse"] | |
) | |
chunks_passados, is_contextualized_chunk = ( | |
await contextualize_chunk_based_on_serializer( | |
serializer, summarizer.contextual_retriever, pages, allPdfsChunks | |
) | |
) | |
# Create enhanced vector store and BM25 index | |
vector_store, bm25, chunk_ids = ( | |
summarizer.vector_store.create_enhanced_vector_store( | |
chunks_passados, is_contextualized_chunk | |
) | |
) | |
# Generate enhanced summary | |
structured_summaries = await summarizer.generate_enhanced_summary( | |
vector_store, | |
bm25, | |
chunk_ids | |
# , serializer["user_message"] | |
, | |
prompt_auxiliar_SEM_CONTEXT, | |
) | |
if not isinstance(structured_summaries, list): | |
from rest_framework.response import Response | |
return Response({"erro": structured_summaries}) | |
texto_completo = summarizer.resumo_gerado + "\n\n" | |
for x in structured_summaries: | |
texto_completo = texto_completo + x["content"] + "\n" | |
print("\n\ntexto_completo[0: 1000]: ", texto_completo[0:1000]) | |
return { | |
"resultado": structured_summaries, | |
"texto_completo": texto_completo, | |
"parametros-utilizados": gerar_resposta_compilada(serializer), | |
} | |