vella-backend / _utils /resumo_completo_cursor.py
luanpoppe
feat: adicionando possibilidade de requisição com gemini, adicionando possibilidade de requsição com deepseek, colocando como padrão não utilizar o llama parse, mudar o padrão para realizar poucas requisições do contextual e lidar com as respostas contendo vários chunks de uma vez só
e70ffc1
import os
from _utils.gerar_relatorio_modelo_usuario.prompts import prompt_auxiliar_SEM_CONTEXT
from _utils.gerar_relatorio_modelo_usuario.EnhancedDocumentSummarizer import (
EnhancedDocumentSummarizer,
)
from _utils.gerar_relatorio_modelo_usuario.contextual_retriever import (
contextualize_chunk_based_on_serializer,
get_full_text_and_all_PDFs_chunks,
)
from _utils.gerar_relatorio_modelo_usuario.utils import gerar_resposta_compilada
from _utils.models.gerar_relatorio import (
RetrievalConfig,
)
def reciprocal_rank_fusion(result_lists, weights=None):
"""Combine multiple ranked lists using reciprocal rank fusion"""
fused_scores = {}
num_lists = len(result_lists)
if weights is None:
weights = [1.0] * num_lists
for i in range(num_lists):
for doc_id, score in result_lists[i]:
if doc_id not in fused_scores:
fused_scores[doc_id] = 0
fused_scores[doc_id] += weights[i] * score
# Sort by score in descending order
sorted_results = sorted(fused_scores.items(), key=lambda x: x[1], reverse=True)
return sorted_results
os.environ["LANGCHAIN_TRACING_V2"] = "true"
os.environ["LANGCHAIN_ENDPOINT"] = "https://api.smith.langchain.com"
os.environ.get("LANGCHAIN_API_KEY")
os.environ["LANGCHAIN_PROJECT"] = "VELLA"
async def get_llm_summary_answer_by_cursor_complete(serializer, listaPDFs=None):
"""Parâmetro "contexto" só deve ser passado quando quiser utilizar o teste com ragas, e assim, não quiser passar PDFs"""
# Configuration
config = RetrievalConfig(
num_chunks=serializer["num_chunks_retrieval"],
embedding_weight=serializer["embedding_weight"],
bm25_weight=serializer["bm25_weight"],
context_window=serializer["context_window"],
chunk_overlap=serializer["chunk_overlap"],
)
# Initialize enhanced summarizer
summarizer = EnhancedDocumentSummarizer(
openai_api_key=os.environ.get("OPENAI_API_KEY"),
claude_api_key=os.environ.get("CLAUDE_API_KEY"),
config=config,
embedding_model=serializer["hf_embedding"],
chunk_overlap=serializer["chunk_overlap"],
chunk_size=serializer["chunk_size"],
num_k_rerank=serializer["num_k_rerank"],
model_cohere_rerank=serializer["model_cohere_rerank"],
claude_context_model=serializer["claude_context_model"],
prompt_auxiliar=serializer["prompt_auxiliar"],
gpt_model=serializer["model"],
gpt_temperature=serializer["gpt_temperature"],
# id_modelo_do_usuario=serializer["id_modelo_do_usuario"],
prompt_gerar_documento=serializer["prompt_gerar_documento"],
reciprocal_rank_fusion=reciprocal_rank_fusion,
)
allPdfsChunks, pages = await get_full_text_and_all_PDFs_chunks(
listaPDFs, summarizer.splitter, serializer["should_use_llama_parse"]
)
chunks_passados, is_contextualized_chunk = (
await contextualize_chunk_based_on_serializer(
serializer, summarizer.contextual_retriever, pages, allPdfsChunks
)
)
# Create enhanced vector store and BM25 index
vector_store, bm25, chunk_ids = (
summarizer.vector_store.create_enhanced_vector_store(
chunks_passados, is_contextualized_chunk
)
)
# Generate enhanced summary
structured_summaries = await summarizer.generate_enhanced_summary(
vector_store,
bm25,
chunk_ids
# , serializer["user_message"]
,
prompt_auxiliar_SEM_CONTEXT,
)
if not isinstance(structured_summaries, list):
from rest_framework.response import Response
return Response({"erro": structured_summaries})
texto_completo = summarizer.resumo_gerado + "\n\n"
for x in structured_summaries:
texto_completo = texto_completo + x["content"] + "\n"
print("\n\ntexto_completo[0: 1000]: ", texto_completo[0:1000])
return {
"resultado": structured_summaries,
"texto_completo": texto_completo,
"parametros-utilizados": gerar_resposta_compilada(serializer),
}