Spaces:
Running
Running
import os | |
from _utils.utils import create_prompt_llm_chain, create_retriever, getPDF, create_llm, create_prompt_llm_chain_summary, process_embedding_summary | |
from _utils import utils | |
from langchain.chains import create_retrieval_chain | |
from langchain_huggingface import HuggingFaceEmbeddings | |
from langchain_chroma import Chroma | |
from langchain_openai import OpenAIEmbeddings | |
from langchain.chains.summarize import load_summarize_chain | |
os.environ.get("OPENAI_API_KEY") | |
def get_llm_answer(system_prompt, user_prompt, pdf_url, model, embedding): | |
if embedding == "gpt": | |
embedding_object = OpenAIEmbeddings() | |
else: | |
embedding_object = HuggingFaceEmbeddings(model_name=embedding) | |
vectorstore = Chroma( | |
collection_name="documents", | |
embedding_function=embedding_object | |
) | |
print('model: ', model) | |
print('embedding: ', embedding) | |
pages = [] | |
if pdf_url: | |
pages = getPDF(pdf_url) | |
else: | |
pages = getPDF() | |
retriever = create_retriever(pages, vectorstore) | |
rag_chain = create_retrieval_chain(retriever, create_prompt_llm_chain(system_prompt, model)) | |
results = rag_chain.invoke({"input": user_prompt}) | |
# print('allIds ARQUIVO MAIN: ', utils.allIds) | |
vectorstore.delete( utils.allIds) | |
vectorstore.delete_collection() | |
utils.allIds = [] | |
# print('utils.allIds: ', utils.allIds) | |
return results | |
def get_llm_answer_summary(system_prompt, user_prompt, pdf_url, model, isIterativeRefinement): | |
print('model: ', model) | |
print('isIterativeRefinement: ', isIterativeRefinement) | |
print('\n\n\n') | |
pages = getPDF(pdf_url) | |
if not isIterativeRefinement: | |
rag_chain = create_prompt_llm_chain_summary(system_prompt, model) | |
results = rag_chain.invoke({"input": user_prompt, "context": pages}) | |
return results | |
else: | |
chain = load_summarize_chain(create_llm(model), "refine", True) | |
result = chain.invoke({"input_documents": pages}) | |
print('result: ', result) | |
return result | |
# Obs --> Para passar informações personalizadas --> chain = load_summarize_chain(llm, "refine", True, question_prompt=initial_prompt, refine_prompt=PromptTemplate.from_template(refine_prompt)) | |
# Para ver mais opções --> Acessa a origem da função load_summarize_chain , e nela acessa a origem da função _load_refine_chain --> As opções são os parâmetros que esta última função recebe | |
def get_llm_answer_summary_with_embedding(system_prompt, user_prompt, pdf_url, model, isIterativeRefinement): | |
print('model: ', model) | |
print('isIterativeRefinement: ', isIterativeRefinement) | |
print('\n\n\n') | |
pages = getPDF(pdf_url) | |
full_texto = "" | |
for p in pages: | |
full_texto += p.page_content | |
print('full_texto: ', full_texto) | |
rag_chain = process_embedding_summary(system_prompt, model) | |
results = rag_chain.invoke({"input": user_prompt, "context": pages}) | |
return results |