Spaces:
Running
Running
File size: 7,519 Bytes
ca8a144 12d3e1a ca8a144 12d3e1a ca8a144 12d3e1a ca8a144 12d3e1a ca8a144 12d3e1a ca8a144 12d3e1a ca8a144 12d3e1a ca8a144 12d3e1a ca8a144 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
import os
from typing import List, Dict, Tuple
from setup.easy_imports import (
HuggingFaceEmbeddings,
PyPDFLoader,
Chroma,
ChatOpenAI,
create_extraction_chain,
PromptTemplate,
RecursiveCharacterTextSplitter,
)
from dataclasses import dataclass
import uuid
import json
from langchain_huggingface import HuggingFaceEndpoint
from setup.environment import default_model
os.environ["LANGCHAIN_TRACING_V2"] = "true"
os.environ["LANGCHAIN_ENDPOINT"] = "https://api.smith.langchain.com"
os.environ.get("LANGCHAIN_API_KEY")
os.environ["LANGCHAIN_PROJECT"] = "VELLA"
@dataclass
class DocumentChunk:
content: str
page_number: int
chunk_id: str
start_char: int
end_char: int
class DocumentSummarizer:
def __init__(
self, openai_api_key: str, model, embedding, chunk_config, system_prompt
):
self.model = model
self.system_prompt = system_prompt
self.openai_api_key = openai_api_key
self.embeddings = HuggingFaceEmbeddings(model_name=embedding)
self.text_splitter = RecursiveCharacterTextSplitter(
chunk_size=chunk_config["size"], chunk_overlap=chunk_config["overlap"]
)
self.chunk_metadata = {} # Store chunk metadata for tracing
def load_and_split_document(self, pdf_path: str) -> List[DocumentChunk]:
"""Load PDF and split into chunks with metadata"""
loader = PyPDFLoader(pdf_path)
pages = loader.load()
chunks = []
char_count = 0
for page in pages:
text = page.page_content
# Split the page content
page_chunks = self.text_splitter.split_text(text)
for chunk in page_chunks:
chunk_id = str(uuid.uuid4())
start_char = text.find(chunk)
end_char = start_char + len(chunk)
doc_chunk = DocumentChunk(
content=chunk,
page_number=page.metadata.get("page") + 1, # 1-based page numbering
chunk_id=chunk_id,
start_char=char_count + start_char,
end_char=char_count + end_char,
)
chunks.append(doc_chunk)
# Store metadata for later retrieval
self.chunk_metadata[chunk_id] = {
"page": doc_chunk.page_number,
"start_char": doc_chunk.start_char,
"end_char": doc_chunk.end_char,
}
char_count += len(text)
return chunks
def create_vector_store(self, chunks: List[DocumentChunk]) -> Chroma:
"""Create vector store with metadata"""
texts = [chunk.content for chunk in chunks]
metadatas = [
{
"chunk_id": chunk.chunk_id,
"page": chunk.page_number,
"start_char": chunk.start_char,
"end_char": chunk.end_char,
}
for chunk in chunks
]
vector_store = Chroma.from_texts(
texts=texts, metadatas=metadatas, embedding=self.embeddings
)
return vector_store
def generate_summary_with_sources(
self,
vector_store: Chroma,
query: str = "Summarize the main points of this document",
) -> List[Dict]:
"""Generate summary with source citations, returning structured JSON data"""
# Retrieve relevant chunks with metadata
relevant_docs = vector_store.similarity_search_with_score(query, k=5)
# Prepare context and track sources
contexts = []
sources = []
for doc, score in relevant_docs:
chunk_id = doc.metadata["chunk_id"]
context = doc.page_content
contexts.append(context)
sources.append(
{
"content": context,
"page": doc.metadata["page"],
"chunk_id": chunk_id,
"relevance_score": score,
}
)
prompt = PromptTemplate(
template=self.system_prompt, input_variables=["context"]
)
llm = ""
if self.model == default_model:
llm = ChatOpenAI(
temperature=0, model_name="gpt-4o-mini", api_key=self.openai_api_key
)
else:
llm = HuggingFaceEndpoint(
repo_id=self.model,
task="text-generation",
max_new_tokens=1100,
do_sample=False,
huggingfacehub_api_token=os.environ.get("HUGGINGFACEHUB_API_TOKEN"),
)
response = llm.invoke(prompt.format(context="\n\n".join(contexts))).content
# Split the response into paragraphs
summaries = [p.strip() for p in response.split("\n\n") if p.strip()]
# Create structured output
structured_output = []
for idx, summary in enumerate(summaries):
# Associate each summary with the most relevant source
structured_output.append(
{
"content": summary,
"source": {
"page": sources[min(idx, len(sources) - 1)]["page"],
"text": sources[min(idx, len(sources) - 1)]["content"][:200]
+ "...",
"relevance_score": sources[min(idx, len(sources) - 1)][
"relevance_score"
],
},
}
)
return structured_output
def get_source_context(self, chunk_id: str, window: int = 100) -> Dict:
"""Get extended context around a specific chunk"""
metadata = self.chunk_metadata.get(chunk_id)
if not metadata:
return None
return {
"page": metadata["page"],
"start_char": metadata["start_char"],
"end_char": metadata["end_char"],
}
def get_llm_summary_answer_by_cursor(serializer, listaPDFs):
# By Luan
allPdfsChunks = []
# Initialize summarizer
summarizer = DocumentSummarizer(
openai_api_key=os.environ.get("OPENAI_API_KEY"),
embedding=serializer["hf_embedding"],
chunk_config={
"size": serializer["chunk_size"],
"overlap": serializer["chunk_overlap"],
},
system_prompt=serializer["system_prompt"],
model=serializer["model"],
)
# Load and process document
for pdf in listaPDFs:
pdf_path = pdf
chunks = summarizer.load_and_split_document(pdf_path)
allPdfsChunks = allPdfsChunks + chunks
vector_store = summarizer.create_vector_store(allPdfsChunks)
# Generate structured summary
structured_summaries = summarizer.generate_summary_with_sources(vector_store)
# Print or return the structured data
# print(structured_summaries)
json_data = json.dumps(structured_summaries)
print("\n\n")
print(json_data)
return structured_summaries
# If you need to send to frontend, you can just return structured_summaries
# It will be in the format:
# [
# {
# "content": "Summary point 1...",
# "source": {
# "page": 1,
# "text": "Source text...",
# "relevance_score": 0.95
# }
# },
# ...
# ]
if __name__ == "__main__":
get_llm_summary_answer_by_cursor()
|