Spaces:
Runtime error
Runtime error
| # GraphaLogue Analyzer | |
| # Marco Kuhlmann <[email protected]> | |
| import itertools | |
| import statistics | |
| import sys | |
| from graph import Graph | |
| from treewidth import quickbb | |
| class DepthFirstSearch(object): | |
| def __init__(self, graph, undirected=False): | |
| self._graph = graph | |
| self._undirected = undirected | |
| self._enter = dict() | |
| self._leave = dict() | |
| self.n_runs = 0 | |
| def compute_timestamps(node, timestamp): | |
| self._enter[node] = next(timestamp) | |
| for edge in self._graph.find_node(node).outgoing_edges: | |
| if not edge.tgt in self._enter: | |
| compute_timestamps(edge.tgt, timestamp) | |
| if self._undirected: | |
| for edge in self._graph.find_node(node).incoming_edges: | |
| if not edge.src in self._enter: | |
| compute_timestamps(edge.src, timestamp) | |
| self._leave[node] = next(timestamp) | |
| timestamp = itertools.count() | |
| for node in self._graph.nodes: | |
| if not node.id in self._enter: | |
| compute_timestamps(node.id, timestamp) | |
| self.n_runs += 1 | |
| def is_back_edge(self, edge): | |
| return \ | |
| self._enter[edge.tgt] < self._enter[edge.src] and \ | |
| self._leave[edge.src] < self._leave[edge.tgt] | |
| class InspectedGraph(object): | |
| def __init__(self, graph): | |
| self.graph = graph | |
| self.n_nodes = len(graph.nodes) | |
| self.dfs = DepthFirstSearch(graph) | |
| self.undirected_dfs = DepthFirstSearch(graph, undirected=True) | |
| def n_root_nodes(self): | |
| return sum(1 for node in self.graph.nodes if node.is_root()) | |
| def n_leaf_nodes(self): | |
| return sum(1 for node in self.graph.nodes if node.is_leaf()) | |
| def n_top_nodes(self): | |
| return sum(1 for node in self.graph.nodes if node.is_top()) | |
| def n_singleton_nodes(self): | |
| return sum(1 for node in self.graph.nodes if node.is_singleton()) | |
| def n_loops(self): | |
| return sum(1 for edge in self.graph.edges if edge.is_loop()) | |
| def n_components(self): | |
| return self.undirected_dfs.n_runs - self.n_singleton_nodes() | |
| def is_cyclic(self): | |
| for edge in self.graph.edges: | |
| if edge.is_loop() or self.dfs.is_back_edge(edge): | |
| return True | |
| return False | |
| def is_forest(self): | |
| if self.is_cyclic(): | |
| return False | |
| else: | |
| for node in self.graph.nodes: | |
| if len(node.incoming_edges) > 1: | |
| return False | |
| return True | |
| def is_tree(self): | |
| return self.is_forest() and self.n_components() == 1 | |
| def treewidth(self): | |
| n_nodes = len(self.graph.nodes) - self.n_singleton_nodes() | |
| if n_nodes <= 1: | |
| return 1 | |
| else: | |
| undirected_graph = {} | |
| for node in self.graph.nodes: | |
| if not node.is_singleton(): | |
| undirected_graph[node.id] = set() | |
| for edge in self.graph.edges: | |
| if not edge.is_loop(): | |
| undirected_graph[edge.src].add(edge.tgt) | |
| undirected_graph[edge.tgt].add(edge.src) | |
| decomposition = quickbb(undirected_graph) | |
| return max(1, max(len(u)-1 for u in decomposition)) | |
| def _crossing_pairs(self): | |
| def endpoints(edge): | |
| return (min(edge.src, edge.tgt), max(edge.src, edge.tgt)) | |
| for edge1 in self.graph.edges: | |
| min1, max1 = endpoints(edge1) | |
| for edge2 in self.graph.edges: | |
| min2, max2 = endpoints(edge2) | |
| if min1 < min2 and min2 < max1 and max1 < max2: | |
| yield (min1, max1), (min2, max2) | |
| def _crossing_edges(self): | |
| crossing_edges = set() | |
| for edge1, edge2 in self._crossing_pairs(): | |
| crossing_edges.add(edge1) | |
| crossing_edges.add(edge2) | |
| return crossing_edges | |
| def is_noncrossing(self): | |
| for _, _ in self._crossing_pairs(): | |
| return False | |
| return True | |
| def is_page2(self): | |
| crossing_graph = {u: set() for u in self._crossing_edges()} | |
| for edge1, edge2 in self._crossing_pairs(): | |
| crossing_graph[edge1].add(edge2) | |
| crossing_graph[edge2].add(edge1) | |
| # Tests whether the specified undirected graph is 2-colorable. | |
| colors = {} | |
| def inner(node, color1, color2): | |
| colors[node] = color1 | |
| for neighbour in crossing_graph[node]: | |
| if neighbour in colors: | |
| if colors[neighbour] == color1: | |
| return False | |
| else: | |
| inner(neighbour, color2, color1) | |
| return True | |
| for node in crossing_graph: | |
| if node not in colors: | |
| if not inner(node, 0, 1): | |
| return False | |
| return True | |
| def density(self): | |
| n_nodes = len(self.graph.nodes) - self.n_singleton_nodes() | |
| if n_nodes <= 1: | |
| return 1 | |
| else: | |
| n_edges = 0 | |
| for edge in self.graph.edges: | |
| if edge.src != edge.tgt: | |
| n_edges += 1 | |
| return n_edges / (n_nodes - 1) | |
| PROPERTY_COUNTER = itertools.count(1) | |
| def report(msg, val): | |
| print("(%02d)\t%s\t%s" % (next(PROPERTY_COUNTER), msg, val)) | |
| def analyze(graphs, ids=None): | |
| ordered = False | |
| n_graphs = 0 | |
| n_graphs_noncrossing = 0 | |
| n_graphs_has_top_node = 0 | |
| n_graphs_multirooted = 0 | |
| n_nodes = 0 | |
| n_nodes_with_reentrancies = 0 | |
| n_singletons = 0 | |
| n_top_nodes = 0 | |
| n_edges = 0 | |
| n_labels = 0; | |
| n_properties = 0; | |
| n_anchors = 0; | |
| n_attributes = 0; | |
| n_loops = 0 | |
| labels = set() | |
| non_functional_labels = set() | |
| n_cyclic = 0 | |
| n_connected = 0 | |
| n_forests = 0 | |
| n_trees = 0 | |
| n_graphs_page2 = 0 | |
| acc_treewidth = 0 | |
| n_roots_nontop = 0 | |
| acc_density = 0.0 | |
| max_treewidth = 0 | |
| acc_edge_length = 0 | |
| n_treewidth_one = 0 | |
| treewidths = [] | |
| for graph in graphs: | |
| if ids and not graph.id in ids: | |
| continue | |
| n_graphs += 1 | |
| n_nodes += len(graph.nodes) | |
| n_edges += len(graph.edges) | |
| for node in graph.nodes: | |
| if node.label is not None: n_labels += 1; | |
| if node.properties is not None and node.values is not None: | |
| n_properties += len(node.properties); | |
| if node.anchors is not None: n_anchors += 1; | |
| for edge in graph.edges: | |
| if edge.attributes is not None and edge.values is not None: | |
| n_attributes += len(edge.attributes); | |
| inspected_graph = InspectedGraph(graph) | |
| treewidth = inspected_graph.treewidth() | |
| n_trees += inspected_graph.is_tree() | |
| acc_density += inspected_graph.density() | |
| has_reentrancies = False | |
| has_top_node = False | |
| n_loops += inspected_graph.n_loops() | |
| for edge in graph.edges: | |
| if edge.lab is not None: labels.add(edge.lab) | |
| for node in graph.nodes: | |
| n_top_nodes += node.is_top | |
| if node.is_top: | |
| has_top_node = True | |
| n_singletons += node.is_singleton() | |
| if len(node.incoming_edges) > 1: | |
| n_nodes_with_reentrancies += 1 | |
| has_reentrancies = True | |
| outgoing_labels = set() | |
| for edge in node.outgoing_edges: | |
| if edge.lab in outgoing_labels: | |
| non_functional_labels.add(edge.lab) | |
| else: | |
| outgoing_labels.add(edge.lab) | |
| if not node.is_singleton() and node.is_root() and not node.is_top: | |
| n_roots_nontop += 1 | |
| n_cyclic += inspected_graph.is_cyclic() | |
| n_connected += inspected_graph.n_components() == 1 | |
| n_forests += inspected_graph.is_forest() | |
| acc_treewidth += treewidth | |
| max_treewidth = max(max_treewidth, treewidth) | |
| n_treewidth_one += treewidth == 1 | |
| treewidths.append(treewidth) | |
| if graph.flavor == 0: | |
| ordered = True | |
| n_graphs_noncrossing += inspected_graph.is_noncrossing() | |
| n_graphs_page2 += inspected_graph.is_page2() | |
| acc_edge_length += sum(edge.length() for edge in graph.edges) | |
| else: | |
| if ordered: | |
| print( | |
| "analyzer.py: cannot mix graphs of different flavors in one file; exit.", file=sys.stderr) | |
| sys.exit(1) | |
| n_graphs_has_top_node += has_top_node | |
| n_graphs_multirooted += inspected_graph.n_root_nodes() > 1 | |
| n_nonsingletons = n_nodes - n_singletons | |
| report("number of graphs", "%d" % n_graphs) | |
| report("number of nodes", "%d" % n_nodes) | |
| n_tuples = n_top_nodes + n_labels + n_properties + n_anchors + n_edges + n_attributes; | |
| if n_tuples > 0: | |
| report("number of tops (percentage)", | |
| "{:d} ({:.2f})".format(n_top_nodes, 100 * n_top_nodes / n_tuples)); | |
| report("number of node labels (percentage)", | |
| "{:d} ({:.2f})".format(n_labels, 100 * n_labels / n_tuples)); | |
| report("number of node properties (percentage)", | |
| "{:d} ({:.2f})".format(n_properties, 100 * n_properties / n_tuples)); | |
| report("number of node anchors (percentage)", | |
| "{:d} ({:.2f})".format(n_anchors, 100 * n_anchors / n_tuples)); | |
| report("number of edges (percentage)", | |
| "{:d} ({:.2f})".format(n_edges, 100 * n_edges / n_tuples)); | |
| report("number of edge attributes (percentage)", | |
| "{:d} ({:.2f})".format(n_attributes, 100 * n_attributes / n_tuples)); | |
| report("number of edge labels", "%d" % len(labels)) | |
| # report("\\percentnode\\ singleton", "%.2f" % (100 * n_singletons / n_nodes)) | |
| # report("\\percentnode\\ non-singleton", "%.2f" % (100 * n_nonsingletons / n_nodes)) | |
| report("\\percentgraph\\ trees", "%.2f" % (100 * n_trees / n_graphs)) | |
| report("\\percentgraph\\ treewidth one", "%.2f" % | |
| (100 * n_treewidth_one / n_graphs)) | |
| report("average treewidth", "%.3f" % (acc_treewidth / n_graphs)) | |
| # report("median treewidth", "%d" % statistics.median(treewidths)) | |
| report("maximal treewidth", "%d" % max_treewidth) | |
| # report("edge density", "%.3f" % (n_edges / n_nonsingletons)) | |
| report("average edge density", "%.3f" % (acc_density / n_graphs)) | |
| report("\\percentnode\\ reentrant", "%.2f" % | |
| (100 * n_nodes_with_reentrancies / n_nonsingletons)) | |
| # report("labels", " ".join(sorted(labels))) | |
| # report("functional labels", " ".join(sorted(labels - non_functional_labels))) | |
| # report("non-functional labels", " ".join(sorted(non_functional_labels))) | |
| # report("\\percentgraph\\ forests", "%.2f" % (100 * n_forests / n_graphs)) | |
| # report("number of top nodes", "%d" % n_top_nodes) | |
| report("\\percentgraph\\ cyclic", "%.2f" % (100 * n_cyclic / n_graphs)) | |
| # report("number of self-loops", "%d" % n_loops) | |
| report("\\percentgraph\\ not connected", "%.2f" % | |
| (100 * (n_graphs - n_connected) / n_graphs)) | |
| # report("\\percentgraph\\ without top", "%.2f" % (100 * (n_graphs - n_graphs_has_top_node) / n_graphs)) | |
| # report("average top nodes per graph", "%.3f" % (n_top_nodes / n_graphs)) | |
| report("\\percentgraph\\ multi-rooted", "%.2f" % | |
| (100 * n_graphs_multirooted / n_graphs)) | |
| report("percentage of non-top roots", "%.2f" % | |
| (100 * n_roots_nontop / n_nonsingletons)) | |
| if ordered: | |
| report("average edge length", "%.3f" % (acc_edge_length / n_edges)) | |
| report("\\percentgraph\\ noncrossing", "%.2f" % | |
| (100 * n_graphs_noncrossing / n_graphs)) | |
| report("\\percentgraph\\ pagenumber two", "%.2f" % | |
| (100 * n_graphs_page2 / n_graphs)) | |
| else: | |
| report("average edge length", "--") | |
| report("\\percentgraph\\ noncrossing", "--") | |
| report("\\percentgraph\\ pagenumber two", "--") | |
| def read_ids(file_name): | |
| ids = set() | |
| with open(file_name) as fp: | |
| for line in fp: | |
| ids.add(line.rstrip()) | |
| return ids | |
| def read_tokens(file_name): | |
| with open(file_name) as fp: | |
| for line in fp: | |
| yield line.split() | |
| def analyze_cmd(read_function, ordered=False): | |
| import sys | |
| ids = None | |
| tokens = None | |
| for arg in sys.argv[2:]: | |
| x, y = tuple(arg.split(':')) | |
| if x == 'ids': | |
| print("Reading whitelisted IDs from %s" % y, file=sys.stderr) | |
| ids = read_ids(y) | |
| if x == 'tokens': | |
| print("Reading tokens from %s" % y, file=sys.stderr) | |
| tokens = read_tokens(y) | |
| with open(sys.argv[1]) as fp: | |
| analyze(read_function(fp), ordered=ordered, ids=ids, tokens=tokens) | |