Upload ConserGPT
Browse files- .gitattributes +2 -35
- .gitignore +3 -0
- Instruccion26septiembre2023PremiosExtraordinariosMusica.pdf +0 -0
- README.md +5 -12
- app.py +111 -0
- ingest.py +26 -0
- requirements.txt +11 -0
.gitattributes
CHANGED
@@ -1,35 +1,2 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
-
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
-
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
-
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
-
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
-
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
-
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
-
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
-
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
-
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
-
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
-
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
-
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
-
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
-
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
-
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
-
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
-
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
-
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
-
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
-
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
-
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
-
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
-
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
-
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
-
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
-
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
-
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
-
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
-
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
-
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
-
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
-
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
1 |
+
# Auto detect text files and perform LF normalization
|
2 |
+
* text=auto
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.gitignore
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
stores
|
2 |
+
ConserGPT
|
3 |
+
zephyr-7b-alpha.Q5_K_S.gguf
|
Instruccion26septiembre2023PremiosExtraordinariosMusica.pdf
ADDED
Binary file (143 kB). View file
|
|
README.md
CHANGED
@@ -1,13 +1,6 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
emoji: 📈
|
4 |
-
colorFrom: indigo
|
5 |
-
colorTo: red
|
6 |
-
sdk: gradio
|
7 |
-
sdk_version: 4.13.0
|
8 |
-
app_file: app.py
|
9 |
-
pinned: false
|
10 |
-
license: other
|
11 |
-
---
|
12 |
|
13 |
-
|
|
|
|
|
|
1 |
+
# Zephyr-7B-beta-RAG-Demo
|
2 |
+
Zephyr 7B beta RAG Demo inside a Gradio app powered by BGE Embeddings, ChromaDB, and Zephyr 7B Alpha.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
+
Download zephyr-7b-alpha.Q5_K_S.gguf in this link : https://huggingface.co/TheBloke/zephyr-7B-alpha-GGUF/tree/main
|
5 |
+
|
6 |
+
https://view.genial.ly/65805d10850fa600146ed98b/presentation-consergpt
|
app.py
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import gradio as gr
|
3 |
+
|
4 |
+
from langchain.llms import CTransformers
|
5 |
+
from langchain.prompts import PromptTemplate
|
6 |
+
|
7 |
+
from langchain.vectorstores import Chroma
|
8 |
+
from langchain.chains import RetrievalQA
|
9 |
+
from langchain.embeddings import HuggingFaceBgeEmbeddings
|
10 |
+
|
11 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
12 |
+
from langchain.document_loaders import PyPDFLoader
|
13 |
+
|
14 |
+
|
15 |
+
local_llm = "zephyr-7b-alpha.Q5_K_S.gguf"
|
16 |
+
|
17 |
+
config = {
|
18 |
+
'max_new_tokens': 1024,
|
19 |
+
'repetition_penalty': 1.1,
|
20 |
+
'temperature': 0.1,
|
21 |
+
'top_k': 50,
|
22 |
+
'top_p': 0.9,
|
23 |
+
'stream': True,
|
24 |
+
'threads': int(os.cpu_count() / 2)
|
25 |
+
}
|
26 |
+
|
27 |
+
llm = CTransformers(
|
28 |
+
model=local_llm,
|
29 |
+
model_type="mistral",
|
30 |
+
lib="avx2", # for CPU use
|
31 |
+
**config
|
32 |
+
)
|
33 |
+
|
34 |
+
print("LLM Initialized...")
|
35 |
+
|
36 |
+
|
37 |
+
prompt_template = """Utiliza la siguiente información para responder a la pregunta del usuario.
|
38 |
+
Si no sabes la respuesta, di simplemente que no la sabes, no intentes inventarte una respuesta.
|
39 |
+
|
40 |
+
Contexto: {context}
|
41 |
+
Pregunta: {question}
|
42 |
+
|
43 |
+
Devuelve sólo la respuesta útil que aparece a continuación y nada más.
|
44 |
+
Responde siempre en castellano
|
45 |
+
Respuesta útil:
|
46 |
+
"""
|
47 |
+
|
48 |
+
model_name = "BAAI/bge-large-en"
|
49 |
+
model_kwargs = {'device': 'cpu'}
|
50 |
+
encode_kwargs = {'normalize_embeddings': False}
|
51 |
+
embeddings = HuggingFaceBgeEmbeddings(
|
52 |
+
model_name=model_name,
|
53 |
+
model_kwargs=model_kwargs,
|
54 |
+
encode_kwargs=encode_kwargs
|
55 |
+
)
|
56 |
+
|
57 |
+
loader = PyPDFLoader(
|
58 |
+
"./Instruccion26septiembre2023PremiosExtraordinariosMusica.pdf")
|
59 |
+
documents = loader.load()
|
60 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
61 |
+
chunk_size=1000, chunk_overlap=100)
|
62 |
+
texts = text_splitter.split_documents(documents)
|
63 |
+
|
64 |
+
vector_store = Chroma.from_documents(texts, embeddings, collection_metadata={
|
65 |
+
"hnsw:space": "cosine"}, persist_directory="stores/ConserGPT")
|
66 |
+
|
67 |
+
print("Vector Store Created.......")
|
68 |
+
|
69 |
+
|
70 |
+
prompt = PromptTemplate(template=prompt_template,
|
71 |
+
input_variables=['context', 'question'])
|
72 |
+
load_vector_store = Chroma(
|
73 |
+
persist_directory="stores/ConserGPT", embedding_function=embeddings)
|
74 |
+
retriever = load_vector_store.as_retriever(search_kwargs={"k": 1})
|
75 |
+
|
76 |
+
print("######################################################################")
|
77 |
+
|
78 |
+
chain_type_kwargs = {"prompt": prompt}
|
79 |
+
|
80 |
+
|
81 |
+
sample_prompts = ["En caso de empate entre el alumnado de alguna especialidad de la enseñanza profesionales de música, ¿Qué criterios se aplicarían para dar el premio?",
|
82 |
+
"¿Qué requisitos debe reunir un alumno candidato al premio extraordinario de enseñanzas profesionales de música?", "¿Cuál es la fecha de publicación en el BOE de la Orden ECD/1611/2015, del 29 de julio, del Ministerio de Educación, Cultura y Deporte?"]
|
83 |
+
|
84 |
+
|
85 |
+
def get_response(input):
|
86 |
+
query = input
|
87 |
+
chain_type_kwargs = {"prompt": prompt}
|
88 |
+
qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever,
|
89 |
+
return_source_documents=True, chain_type_kwargs=chain_type_kwargs, verbose=True)
|
90 |
+
response = qa(query)
|
91 |
+
return response["result"]
|
92 |
+
|
93 |
+
|
94 |
+
input = gr.Text(
|
95 |
+
label="Prompt",
|
96 |
+
show_label=False,
|
97 |
+
max_lines=1,
|
98 |
+
placeholder="Enter your prompt",
|
99 |
+
container=False,
|
100 |
+
)
|
101 |
+
|
102 |
+
iface = gr.Interface(fn=get_response,
|
103 |
+
inputs=input,
|
104 |
+
outputs="text",
|
105 |
+
title="ConserGPT",
|
106 |
+
description="This is a RAG implementation based on Zephyr 7B Alpha LLM.",
|
107 |
+
examples=sample_prompts,
|
108 |
+
allow_flagging='never'
|
109 |
+
)
|
110 |
+
|
111 |
+
iface.launch(share=True)
|
ingest.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
3 |
+
from langchain.vectorstores import Chroma
|
4 |
+
from langchain.embeddings import HuggingFaceBgeEmbeddings
|
5 |
+
from langchain.document_loaders import PyPDFLoader
|
6 |
+
|
7 |
+
model_name = "BAAI/bge-large-en"
|
8 |
+
model_kwargs = {'device': 'cpu'}
|
9 |
+
encode_kwargs = {'normalize_embeddings': False}
|
10 |
+
embeddings = HuggingFaceBgeEmbeddings(
|
11 |
+
model_name=model_name,
|
12 |
+
model_kwargs=model_kwargs,
|
13 |
+
encode_kwargs=encode_kwargs
|
14 |
+
)
|
15 |
+
|
16 |
+
loader = PyPDFLoader(
|
17 |
+
"./Instruccion26septiembre2023PremiosExtraordinariosMusica.pdf")
|
18 |
+
documents = loader.load()
|
19 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
20 |
+
chunk_size=1000, chunk_overlap=100)
|
21 |
+
texts = text_splitter.split_documents(documents)
|
22 |
+
|
23 |
+
vector_store = Chroma.from_documents(texts, embeddings, collection_metadata={
|
24 |
+
"hnsw:space": "cosine"}, persist_directory="stores/ConserGPT")
|
25 |
+
|
26 |
+
print("Vector Store Created.......")
|
requirements.txt
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
chainlit
|
2 |
+
ctransformers
|
3 |
+
torch
|
4 |
+
sentence_transformers
|
5 |
+
chromadb
|
6 |
+
langchain
|
7 |
+
pypdf
|
8 |
+
PyPDF2
|
9 |
+
gradio
|
10 |
+
transformers
|
11 |
+
accelerate
|