Spaces:
Runtime error
Runtime error
| import os | |
| import functools | |
| import re | |
| import pickle | |
| import time | |
| CACHE_FOLDER = "gpt_log" | |
| if not os.path.exists(CACHE_FOLDER): | |
| os.makedirs(CACHE_FOLDER) | |
| def lru_file_cache(maxsize=128, ttl=None, filename=None): | |
| """ | |
| Decorator that caches a function's return value after being called with given arguments. | |
| It uses a Least Recently Used (LRU) cache strategy to limit the size of the cache. | |
| maxsize: Maximum size of the cache. Defaults to 128. | |
| ttl: Time-to-Live of the cache. If a value hasn't been accessed for `ttl` seconds, it will be evicted from the cache. | |
| filename: Name of the file to store the cache in. If not supplied, the function name + ".cache" will be used. | |
| """ | |
| cache_path = os.path.join(CACHE_FOLDER, f"{filename}.cache") if filename is not None else None | |
| def decorator_function(func): | |
| cache = {} | |
| _cache_info = { | |
| "hits": 0, | |
| "misses": 0, | |
| "maxsize": maxsize, | |
| "currsize": 0, | |
| "ttl": ttl, | |
| "filename": cache_path, | |
| } | |
| def wrapper_function(*args, **kwargs): | |
| key = str((args, frozenset(kwargs))) | |
| if key in cache: | |
| if _cache_info["ttl"] is None or (cache[key][1] + _cache_info["ttl"]) >= time.time(): | |
| _cache_info["hits"] += 1 | |
| print(f'Warning, reading cache, last read {(time.time()-cache[key][1])//60} minutes ago'); time.sleep(2) | |
| cache[key][1] = time.time() | |
| return cache[key][0] | |
| else: | |
| del cache[key] | |
| result = func(*args, **kwargs) | |
| cache[key] = [result, time.time()] | |
| _cache_info["misses"] += 1 | |
| _cache_info["currsize"] += 1 | |
| if _cache_info["currsize"] > _cache_info["maxsize"]: | |
| oldest_key = None | |
| for k in cache: | |
| if oldest_key is None: | |
| oldest_key = k | |
| elif cache[k][1] < cache[oldest_key][1]: | |
| oldest_key = k | |
| del cache[oldest_key] | |
| _cache_info["currsize"] -= 1 | |
| if cache_path is not None: | |
| with open(cache_path, "wb") as f: | |
| pickle.dump(cache, f) | |
| return result | |
| def cache_info(): | |
| return _cache_info | |
| wrapper_function.cache_info = cache_info | |
| if cache_path is not None and os.path.exists(cache_path): | |
| with open(cache_path, "rb") as f: | |
| cache = pickle.load(f) | |
| _cache_info["currsize"] = len(cache) | |
| return wrapper_function | |
| return decorator_function | |
| def contains_chinese(string): | |
| """ | |
| Returns True if the given string contains Chinese characters, False otherwise. | |
| """ | |
| chinese_regex = re.compile(u'[\u4e00-\u9fff]+') | |
| return chinese_regex.search(string) is not None | |
| def extract_chinese_characters(file_path): | |
| syntax = [] | |
| with open(file_path, 'r', encoding='utf-8') as f: | |
| content = f.read() | |
| import ast | |
| root = ast.parse(content) | |
| for node in ast.walk(root): | |
| if isinstance(node, ast.Name): | |
| if contains_chinese(node.id): | |
| print(node.id) | |
| syntax.append(node) | |
| return syntax | |
| def extract_chinese_characters_from_directory(directory_path): | |
| chinese_characters = [] | |
| for root, dirs, files in os.walk(directory_path): | |
| for file in files: | |
| if file.endswith('.py'): | |
| file_path = os.path.join(root, file) | |
| chinese_characters.extend(extract_chinese_characters(file_path)) | |
| return chinese_characters | |
| directory_path = './' | |
| chinese_characters = extract_chinese_characters_from_directory(directory_path) | |
| word_to_translate = {} | |
| for d in chinese_characters: | |
| word_to_translate[d['word']] = "TRANS" | |
| def break_dictionary(d, n): | |
| items = list(d.items()) | |
| num_dicts = (len(items) + n - 1) // n | |
| return [{k: v for k, v in items[i*n:(i+1)*n]} for i in range(num_dicts)] | |
| N_EACH_REQ = 50 | |
| word_to_translate_split = break_dictionary(word_to_translate, N_EACH_REQ) | |
| LANG = "English" | |
| def trans(words): | |
| # from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive | |
| # from toolbox import get_conf, ChatBotWithCookies | |
| # proxies, WEB_PORT, LLM_MODEL, CONCURRENT_COUNT, AUTHENTICATION, CHATBOT_HEIGHT, LAYOUT, API_KEY = \ | |
| # get_conf('proxies', 'WEB_PORT', 'LLM_MODEL', 'CONCURRENT_COUNT', 'AUTHENTICATION', 'CHATBOT_HEIGHT', 'LAYOUT', 'API_KEY') | |
| # llm_kwargs = { | |
| # 'api_key': API_KEY, | |
| # 'llm_model': LLM_MODEL, | |
| # 'top_p':1.0, | |
| # 'max_length': None, | |
| # 'temperature':0.0, | |
| # } | |
| # plugin_kwargs = {} | |
| # chatbot = ChatBotWithCookies(llm_kwargs) | |
| # history = [] | |
| # for gpt_say in request_gpt_model_in_new_thread_with_ui_alive( | |
| # inputs=words, inputs_show_user=words, | |
| # llm_kwargs=llm_kwargs, chatbot=chatbot, history=[], | |
| # sys_prompt=f"Translate following words to {LANG}, replace `TRANS` with translated result." | |
| # ): | |
| # gpt_say = gpt_say[1][0][1] | |
| # return gpt_say | |
| return '{}' | |
| translated_result = {} | |
| for d in word_to_translate_split: | |
| res = trans(str(d)) | |
| try: | |
| # convert translated result back to python dictionary | |
| res_dict = eval(res) | |
| except: | |
| print('Unexpected output.') | |
| translated_result.update(res_dict) | |
| print('All Chinese characters:', chinese_characters) | |
| # =================== create copy ===================== | |
| def copy_source_code(): | |
| """ | |
| 一键更新协议:备份和下载 | |
| """ | |
| from toolbox import get_conf | |
| import shutil | |
| import os | |
| import requests | |
| import zipfile | |
| try: shutil.rmtree(f'./multi-language/{LANG}/') | |
| except: pass | |
| os.makedirs(f'./multi-language', exist_ok=True) | |
| backup_dir = f'./multi-language/{LANG}/' | |
| shutil.copytree('./', backup_dir, ignore=lambda x, y: ['multi-language', 'gpt_log', '.git', 'private_upload']) | |
| copy_source_code() | |
| for d in chinese_characters: | |
| d['file'] = f'./multi-language/{LANG}/' + d['file'] | |
| if d['word'] in translated_result: | |
| d['trans'] = translated_result[d['word']] | |
| else: | |
| d['trans'] = None | |
| chinese_characters = sorted(chinese_characters, key=lambda x: len(x['word']), reverse=True) | |
| for d in chinese_characters: | |
| if d['trans'] is None: | |
| continue | |
| with open(d['file'], 'r', encoding='utf-8') as f: | |
| content = f.read() | |
| content.replace(d['word'], d['trans']) | |
| substring = d['trans'] | |
| substring_start_index = content.find(substring) | |
| substring_end_index = substring_start_index + len(substring) - 1 | |
| if content[substring_start_index].isalpha() or content[substring_start_index].isdigit(): | |
| content = content[:substring_start_index+1] | |