Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- app.py +34 -88
- requirements.txt +3 -1
app.py
CHANGED
@@ -5,8 +5,8 @@ import numpy as np
|
|
5 |
from typing import List, Optional
|
6 |
from langchain_community.vectorstores import FAISS
|
7 |
from langchain.embeddings.base import Embeddings
|
8 |
-
from gradio_client import Client
|
9 |
import gradio as gr
|
|
|
10 |
|
11 |
# Configuration
|
12 |
DATA_FILE = "data-mtc.txt" # This file is no longer used in the Space
|
@@ -38,30 +38,17 @@ logging.basicConfig(
|
|
38 |
]
|
39 |
)
|
40 |
|
41 |
-
#
|
42 |
-
|
43 |
-
|
44 |
-
"Comment se préparer à une discussion de groupe MTC ?",
|
45 |
-
"Quels sont les obstacles courants à la compréhension des Chroniques ?"
|
46 |
-
]
|
47 |
|
48 |
-
class
|
49 |
-
"""Embedding management using
|
50 |
-
|
51 |
-
def __init__(self):
|
52 |
-
super().__init__()
|
53 |
-
self.client = Client("localsavageai/embijiji3")
|
54 |
|
55 |
def _generate_embedding(self, text: str) -> np.ndarray:
|
56 |
-
"""Generate an embedding via the
|
57 |
try:
|
58 |
-
|
59 |
-
document=text.strip(),
|
60 |
-
api_name="/embed"
|
61 |
-
)
|
62 |
-
if not isinstance(result, list):
|
63 |
-
raise ValueError("Invalid embedding response from Gradio API")
|
64 |
-
return np.array(result, dtype=np.float32)
|
65 |
except Exception as e:
|
66 |
logging.error(f"Embedding error: {str(e)}")
|
67 |
raise RuntimeError("Failed to generate embedding") from e
|
@@ -75,7 +62,7 @@ class GradioEmbeddings(Embeddings):
|
|
75 |
|
76 |
def initialize_vector_store() -> FAISS:
|
77 |
"""Robust initialization of the vector store"""
|
78 |
-
embeddings =
|
79 |
|
80 |
try:
|
81 |
logging.info("Loading existing database...")
|
@@ -114,21 +101,28 @@ def generate_response(user_input: str, vector_store: FAISS) -> Optional[str]:
|
|
114 |
for i, doc in enumerate(best_docs)
|
115 |
)
|
116 |
|
117 |
-
|
118 |
-
query=user_input,
|
119 |
-
history=[],
|
120 |
-
system=BASE_SYSTEM_PROMPT.format(context=context),
|
121 |
-
api_name="/model_chat"
|
122 |
-
)
|
123 |
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
|
|
|
|
|
|
|
|
130 |
|
131 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
|
133 |
except Exception as e:
|
134 |
logging.error(f"Generation error: {str(e)}", exc_info=True)
|
@@ -146,66 +140,18 @@ def chatbot(query):
|
|
146 |
return f"Une erreur s'est produite : {str(e)}"
|
147 |
|
148 |
|
149 |
-
# Rotating Example Questions Functionality
|
150 |
-
def get_random_questions():
|
151 |
-
"""Selects three random example questions"""
|
152 |
-
return random.sample(EXAMPLE_QUESTIONS, 3)
|
153 |
-
|
154 |
# Gradio Interface Setup with Enhanced UI
|
155 |
with gr.Blocks(title="MTC Chatbot") as demo:
|
156 |
gr.Markdown("# Apprenez-en plus sur le savoir MTC!")
|
157 |
|
158 |
chatbot_ui = gr.Chatbot(label="MTC Assistant", type="messages")
|
159 |
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
)
|
165 |
|
166 |
-
|
167 |
-
vs = initialize_vector_store()
|
168 |
-
response = generate_response(message, vs)
|
169 |
-
|
170 |
-
history.append({"role": "user", "content": message})
|
171 |
-
history.append({"role": "assistant", "content": response})
|
172 |
-
|
173 |
-
# After every interaction, get new random questions
|
174 |
-
example_questions = get_random_questions()
|
175 |
-
|
176 |
-
# Recreate the buttons with new questions
|
177 |
-
example_buttons = []
|
178 |
-
for question in example_questions:
|
179 |
-
btn = gr.Button(question)
|
180 |
-
btn.click(
|
181 |
-
process_example_click,
|
182 |
-
inputs=[gr.Textbox(value=question, visible=False), chatbot_ui],
|
183 |
-
outputs=chatbot_ui
|
184 |
-
)
|
185 |
-
example_buttons.append(btn)
|
186 |
-
|
187 |
-
return history
|
188 |
-
|
189 |
-
def process_example_click(example_query, history):
|
190 |
-
response = chatbot(example_query)
|
191 |
-
history.append({"role": "user", "content": example_query})
|
192 |
-
history.append({"role": "assistant", "content": response})
|
193 |
-
return history
|
194 |
-
|
195 |
-
# Initial example questions
|
196 |
-
example_questions = get_random_questions()
|
197 |
-
with gr.Row():
|
198 |
-
example_buttons = []
|
199 |
-
for question in example_questions:
|
200 |
-
btn = gr.Button(question)
|
201 |
-
btn.click(
|
202 |
-
process_example_click,
|
203 |
-
inputs=[gr.Textbox(value=question, visible=False), chatbot_ui],
|
204 |
-
outputs=chatbot_ui
|
205 |
-
)
|
206 |
-
example_buttons.append(btn)
|
207 |
-
|
208 |
-
input_box.submit(respond, [input_box, chatbot_ui], chatbot_ui)
|
209 |
|
210 |
if __name__ == "__main__":
|
211 |
demo.launch()
|
|
|
5 |
from typing import List, Optional
|
6 |
from langchain_community.vectorstores import FAISS
|
7 |
from langchain.embeddings.base import Embeddings
|
|
|
8 |
import gradio as gr
|
9 |
+
from sentence_transformers import SentenceTransformer
|
10 |
|
11 |
# Configuration
|
12 |
DATA_FILE = "data-mtc.txt" # This file is no longer used in the Space
|
|
|
38 |
]
|
39 |
)
|
40 |
|
41 |
+
# Embedding Model Integration
|
42 |
+
device = torch.device("cpu")
|
43 |
+
embedding_model = SentenceTransformer("Snowflake/snowflake-arctic-embed-l", device=device, trust_remote_code=True)
|
|
|
|
|
|
|
44 |
|
45 |
+
class HuggingFaceEmbeddings(Embeddings):
|
46 |
+
"""Embedding management using Hugging Face SentenceTransformer"""
|
|
|
|
|
|
|
|
|
47 |
|
48 |
def _generate_embedding(self, text: str) -> np.ndarray:
|
49 |
+
"""Generate an embedding via the Hugging Face model"""
|
50 |
try:
|
51 |
+
return np.array(embedding_model.encode(text.strip()), dtype=np.float32)
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
except Exception as e:
|
53 |
logging.error(f"Embedding error: {str(e)}")
|
54 |
raise RuntimeError("Failed to generate embedding") from e
|
|
|
62 |
|
63 |
def initialize_vector_store() -> FAISS:
|
64 |
"""Robust initialization of the vector store"""
|
65 |
+
embeddings = HuggingFaceEmbeddings()
|
66 |
|
67 |
try:
|
68 |
logging.info("Loading existing database...")
|
|
|
101 |
for i, doc in enumerate(best_docs)
|
102 |
)
|
103 |
|
104 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
|
|
|
|
|
|
|
|
105 |
|
106 |
+
model_name = "Qwen/Qwen2.5-72B-Instruct"
|
107 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype="auto", device_map="auto")
|
108 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
109 |
+
|
110 |
+
prompt = BASE_SYSTEM_PROMPT.format(context=context)
|
111 |
+
|
112 |
+
messages = [
|
113 |
+
{"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."},
|
114 |
+
{"role": "user", "content": user_input}
|
115 |
+
]
|
116 |
|
117 |
+
text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
118 |
+
|
119 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
120 |
+
|
121 |
+
generated_ids = model.generate(**model_inputs, max_new_tokens=512)
|
122 |
+
|
123 |
+
response = tokenizer.batch_decode(generated_ids[:, model_inputs.input_ids.shape[-1]:], skip_special_tokens=True)
|
124 |
+
|
125 |
+
return response[0] if response else "Réponse indisponible - Veuillez reformuler votre question."
|
126 |
|
127 |
except Exception as e:
|
128 |
logging.error(f"Generation error: {str(e)}", exc_info=True)
|
|
|
140 |
return f"Une erreur s'est produite : {str(e)}"
|
141 |
|
142 |
|
|
|
|
|
|
|
|
|
|
|
143 |
# Gradio Interface Setup with Enhanced UI
|
144 |
with gr.Blocks(title="MTC Chatbot") as demo:
|
145 |
gr.Markdown("# Apprenez-en plus sur le savoir MTC!")
|
146 |
|
147 |
chatbot_ui = gr.Chatbot(label="MTC Assistant", type="messages")
|
148 |
|
149 |
+
input_box = gr.Textbox(
|
150 |
+
placeholder="Posez votre question ici...",
|
151 |
+
label="Votre question"
|
152 |
+
)
|
|
|
153 |
|
154 |
+
input_box.submit(chatbot, inputs=input_box, outputs=chatbot_ui)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
155 |
|
156 |
if __name__ == "__main__":
|
157 |
demo.launch()
|
requirements.txt
CHANGED
@@ -4,4 +4,6 @@ faiss-cpu
|
|
4 |
gradio
|
5 |
gradio_client
|
6 |
numpy
|
7 |
-
|
|
|
|
|
|
4 |
gradio
|
5 |
gradio_client
|
6 |
numpy
|
7 |
+
sentence_transformers
|
8 |
+
einops
|
9 |
+
torch
|