Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Update app.py
Browse files
app.py
CHANGED
|
@@ -63,38 +63,6 @@ leaderboard_df = original_df.copy()
|
|
| 63 |
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
| 64 |
|
| 65 |
# Searching and filtering
|
| 66 |
-
# def update_table(
|
| 67 |
-
# hidden_df: pd.DataFrame,
|
| 68 |
-
# columns: list,
|
| 69 |
-
# type_query: list,
|
| 70 |
-
# precision_query: str,
|
| 71 |
-
# size_query: list,
|
| 72 |
-
# add_special_tokens_query: list,
|
| 73 |
-
# num_few_shots_query: list,
|
| 74 |
-
# show_deleted: bool,
|
| 75 |
-
# show_merges: bool,
|
| 76 |
-
# show_flagged: bool,
|
| 77 |
-
# query: str,
|
| 78 |
-
# ):
|
| 79 |
-
# print(f"Update table called with: type_query={type_query}, precision_query={precision_query}, size_query={size_query}")
|
| 80 |
-
# print(f"hidden_df shape before filtering: {hidden_df.shape}")
|
| 81 |
-
|
| 82 |
-
# filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, add_special_tokens_query, num_few_shots_query, show_deleted, show_merges, show_flagged)
|
| 83 |
-
# print(f"filtered_df shape after filter_models: {filtered_df.shape}")
|
| 84 |
-
|
| 85 |
-
# filtered_df = filter_queries(query, filtered_df)
|
| 86 |
-
# print(f"filtered_df shape after filter_queries: {filtered_df.shape}")
|
| 87 |
-
|
| 88 |
-
# print(f"Filter applied: query={query}, columns={columns}, type_query={type_query}, precision_query={precision_query}")
|
| 89 |
-
# print("Filtered dataframe head:")
|
| 90 |
-
# print(filtered_df.head())
|
| 91 |
-
|
| 92 |
-
# df = select_columns(filtered_df, columns)
|
| 93 |
-
# print(f"Final df shape: {df.shape}")
|
| 94 |
-
# print("Final dataframe head:")
|
| 95 |
-
# print(df.head())
|
| 96 |
-
# return df
|
| 97 |
-
|
| 98 |
def update_table(
|
| 99 |
hidden_df: pd.DataFrame,
|
| 100 |
columns: list,
|
|
@@ -125,13 +93,8 @@ def update_table(
|
|
| 125 |
print(f"Final df shape: {df.shape}")
|
| 126 |
print("Final dataframe head:")
|
| 127 |
print(df.head())
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
return gr.Dataframe.update(
|
| 131 |
-
value=df.to_dict(orient="records"),
|
| 132 |
-
headers=list(df.columns),
|
| 133 |
-
datatype=column_dtypes
|
| 134 |
-
)
|
| 135 |
|
| 136 |
def load_query(request: gr.Request): # triggered only once at startup => read query parameter if it exists
|
| 137 |
query = request.query_params.get("query") or ""
|
|
@@ -142,25 +105,16 @@ def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
|
|
| 142 |
return df[(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))]
|
| 143 |
|
| 144 |
|
| 145 |
-
# def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
|
| 146 |
-
# always_here_cols = [
|
| 147 |
-
# AutoEvalColumn.model_type_symbol.name,
|
| 148 |
-
# AutoEvalColumn.model.name,
|
| 149 |
-
# ]
|
| 150 |
-
# # We use COLS to maintain sorting
|
| 151 |
-
# filtered_df = df[
|
| 152 |
-
# always_here_cols + [c for c in COLS if c in df.columns and c in columns]# + [AutoEvalColumn.dummy.name]
|
| 153 |
-
# ]
|
| 154 |
-
# return filtered_df
|
| 155 |
-
|
| 156 |
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
|
| 157 |
always_here_cols = [
|
| 158 |
AutoEvalColumn.model_type_symbol.name,
|
| 159 |
AutoEvalColumn.model.name,
|
| 160 |
]
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
|
|
|
|
|
|
| 164 |
|
| 165 |
|
| 166 |
def filter_queries(query: str, filtered_df: pd.DataFrame):
|
|
@@ -309,20 +263,11 @@ with demo:
|
|
| 309 |
leaderboard_df_filtered = filter_models(leaderboard_df, [t.to_str(" : ") for t in ModelType], list(NUMERIC_INTERVALS.keys()), [i.value.name for i in Precision], [i.value.name for i in AddSpecialTokens], [i.value.name for i in NumFewShots], False, False, False)
|
| 310 |
initial_columns = [c.name for c in fields(AutoEvalColumn) if c.never_hidden or c.displayed_by_default]
|
| 311 |
leaderboard_df_filtered = select_columns(leaderboard_df_filtered, initial_columns)
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
# leaderboard_table = gr.components.Dataframe(
|
| 315 |
-
# value=leaderboard_df_filtered,
|
| 316 |
-
# headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
| 317 |
-
# datatype=TYPES,
|
| 318 |
-
# elem_id="leaderboard-table",
|
| 319 |
-
# interactive=False,
|
| 320 |
-
# visible=True,
|
| 321 |
-
# )
|
| 322 |
leaderboard_table = gr.components.Dataframe(
|
| 323 |
-
value=leaderboard_df_filtered
|
| 324 |
-
headers=
|
| 325 |
-
datatype=
|
| 326 |
elem_id="leaderboard-table",
|
| 327 |
interactive=False,
|
| 328 |
visible=True,
|
|
|
|
| 63 |
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
| 64 |
|
| 65 |
# Searching and filtering
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
def update_table(
|
| 67 |
hidden_df: pd.DataFrame,
|
| 68 |
columns: list,
|
|
|
|
| 93 |
print(f"Final df shape: {df.shape}")
|
| 94 |
print("Final dataframe head:")
|
| 95 |
print(df.head())
|
| 96 |
+
return df
|
| 97 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
|
| 99 |
def load_query(request: gr.Request): # triggered only once at startup => read query parameter if it exists
|
| 100 |
query = request.query_params.get("query") or ""
|
|
|
|
| 105 |
return df[(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))]
|
| 106 |
|
| 107 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
|
| 109 |
always_here_cols = [
|
| 110 |
AutoEvalColumn.model_type_symbol.name,
|
| 111 |
AutoEvalColumn.model.name,
|
| 112 |
]
|
| 113 |
+
# We use COLS to maintain sorting
|
| 114 |
+
filtered_df = df[
|
| 115 |
+
always_here_cols + [c for c in COLS if c in df.columns and c in columns]# + [AutoEvalColumn.dummy.name]
|
| 116 |
+
]
|
| 117 |
+
return filtered_df
|
| 118 |
|
| 119 |
|
| 120 |
def filter_queries(query: str, filtered_df: pd.DataFrame):
|
|
|
|
| 263 |
leaderboard_df_filtered = filter_models(leaderboard_df, [t.to_str(" : ") for t in ModelType], list(NUMERIC_INTERVALS.keys()), [i.value.name for i in Precision], [i.value.name for i in AddSpecialTokens], [i.value.name for i in NumFewShots], False, False, False)
|
| 264 |
initial_columns = [c.name for c in fields(AutoEvalColumn) if c.never_hidden or c.displayed_by_default]
|
| 265 |
leaderboard_df_filtered = select_columns(leaderboard_df_filtered, initial_columns)
|
| 266 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 267 |
leaderboard_table = gr.components.Dataframe(
|
| 268 |
+
value=leaderboard_df_filtered,
|
| 269 |
+
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
| 270 |
+
datatype=TYPES,
|
| 271 |
elem_id="leaderboard-table",
|
| 272 |
interactive=False,
|
| 273 |
visible=True,
|