Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Update app.py
Browse files
app.py
CHANGED
|
@@ -143,43 +143,37 @@ def filter_queries(query: str, filtered_df: pd.DataFrame):
|
|
| 143 |
def filter_models(
|
| 144 |
df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, add_special_tokens_query: list, num_few_shots_query: list, show_deleted: bool, show_merges: bool, show_flagged: bool
|
| 145 |
) -> pd.DataFrame:
|
|
|
|
| 146 |
print(f"Initial df shape: {df.shape}")
|
| 147 |
-
print(f"Initial df columns: {df.columns}")
|
| 148 |
print(f"Initial df content:\n{df}")
|
| 149 |
-
|
| 150 |
-
filtered_df = df
|
| 151 |
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
|
|
|
| 155 |
print(f"After type filter: {filtered_df.shape}")
|
|
|
|
| 156 |
|
| 157 |
-
# Precision
|
| 158 |
-
filtered_df = filtered_df[filtered_df[AutoEvalColumn.precision.name].isin(precision_query + ["None"
|
| 159 |
print(f"After precision filter: {filtered_df.shape}")
|
|
|
|
| 160 |
|
| 161 |
-
#
|
| 162 |
-
filtered_df = filtered_df[filtered_df[AutoEvalColumn.add_special_tokens.name].isin(add_special_tokens_query + ["Unknown", "?"])]
|
| 163 |
print(f"After add_special_tokens filter: {filtered_df.shape}")
|
|
|
|
| 164 |
|
| 165 |
-
#
|
| 166 |
-
filtered_df = filtered_df[filtered_df[AutoEvalColumn.num_few_shots.name].isin(num_few_shots_query + ["Unknown", "?"])]
|
| 167 |
print(f"After num_few_shots filter: {filtered_df.shape}")
|
|
|
|
| 168 |
|
| 169 |
-
#
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query if s != "Unknown"]))
|
| 174 |
-
params_column = pd.to_numeric(filtered_df[AutoEvalColumn.params.name], errors="coerce")
|
| 175 |
-
size_mask = params_column.apply(lambda x: any(numeric_interval.contains(x)) if pd.notnull(x) else False)
|
| 176 |
-
|
| 177 |
-
filtered_df = filtered_df[size_mask]
|
| 178 |
print(f"After size filter: {filtered_df.shape}")
|
|
|
|
| 179 |
|
| 180 |
-
print("Filtered dataframe head:")
|
| 181 |
-
print(filtered_df.head())
|
| 182 |
-
print(f"Filtered df columns: {filtered_df.columns}")
|
| 183 |
return filtered_df
|
| 184 |
|
| 185 |
leaderboard_df = filter_models(leaderboard_df, [t.to_str(" : ") for t in ModelType], list(NUMERIC_INTERVALS.keys()), [i.value.name for i in Precision], [i.value.name for i in AddSpecialTokens], [i.value.name for i in NumFewShots], False, False, False)
|
|
@@ -263,22 +257,19 @@ with demo:
|
|
| 263 |
elem_id="filter-columns-num-few-shots",
|
| 264 |
)
|
| 265 |
|
| 266 |
-
leaderboard_df_filtered = filter_models(leaderboard_df, [t.to_str(" ") for t in ModelType], list(NUMERIC_INTERVALS.keys()), [i.value.name for i in Precision], [i.value.name for i in AddSpecialTokens], [i.value.name for i in NumFewShots], False, False, False)
|
| 267 |
|
| 268 |
-
# 列名の重複を解消
|
| 269 |
-
leaderboard_df_filtered.columns = pd.io.parsers.base._maybe_dedup_names(leaderboard_df_filtered.columns)
|
| 270 |
-
|
| 271 |
leaderboard_table = gr.components.Dataframe(
|
| 272 |
-
value=leaderboard_df_filtered
|
| 273 |
-
headers=
|
| 274 |
-
datatype=
|
| 275 |
elem_id="leaderboard-table",
|
| 276 |
interactive=False,
|
| 277 |
visible=True,
|
| 278 |
)
|
| 279 |
print("Leaderboard table initial value:")
|
| 280 |
-
print(
|
| 281 |
-
print(f"Leaderboard table shape: {
|
| 282 |
|
| 283 |
# Dummy leaderboard for handling the case when the user uses backspace key
|
| 284 |
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
|
|
|
| 143 |
def filter_models(
|
| 144 |
df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, add_special_tokens_query: list, num_few_shots_query: list, show_deleted: bool, show_merges: bool, show_flagged: bool
|
| 145 |
) -> pd.DataFrame:
|
| 146 |
+
print(f"filter_models called with: type_query={type_query}, size_query={size_query}, precision_query={precision_query}, add_special_tokens_query={add_special_tokens_query}, num_few_shots_query={num_few_shots_query}")
|
| 147 |
print(f"Initial df shape: {df.shape}")
|
|
|
|
| 148 |
print(f"Initial df content:\n{df}")
|
|
|
|
|
|
|
| 149 |
|
| 150 |
+
filtered_df = df
|
| 151 |
+
|
| 152 |
+
# type_emoji = [t[0] for t in type_query]
|
| 153 |
+
# filtered_df = filtered_df[filtered_df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
|
| 154 |
print(f"After type filter: {filtered_df.shape}")
|
| 155 |
+
print(f"After type filter content:\n{filtered_df}")
|
| 156 |
|
| 157 |
+
# Precision filterをコメントアウト
|
| 158 |
+
# filtered_df = filtered_df[filtered_df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
|
| 159 |
print(f"After precision filter: {filtered_df.shape}")
|
| 160 |
+
print(f"After precision filter content:\n{filtered_df}")
|
| 161 |
|
| 162 |
+
# filtered_df = filtered_df[filtered_df[AutoEvalColumn.add_special_tokens.name].isin(add_special_tokens_query)]
|
|
|
|
| 163 |
print(f"After add_special_tokens filter: {filtered_df.shape}")
|
| 164 |
+
print(f"After add_special_tokens filter content:\n{filtered_df}")
|
| 165 |
|
| 166 |
+
# filtered_df = filtered_df[filtered_df[AutoEvalColumn.num_few_shots.name].isin(num_few_shots_query)]
|
|
|
|
| 167 |
print(f"After num_few_shots filter: {filtered_df.shape}")
|
| 168 |
+
print(f"After num_few_shots filter content:\n{filtered_df}")
|
| 169 |
|
| 170 |
+
# numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
|
| 171 |
+
# params_column = pd.to_numeric(filtered_df[AutoEvalColumn.params.name], errors="coerce")
|
| 172 |
+
# mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
|
| 173 |
+
# filtered_df = filtered_df.loc[mask]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 174 |
print(f"After size filter: {filtered_df.shape}")
|
| 175 |
+
print(f"After size filter content:\n{filtered_df}")
|
| 176 |
|
|
|
|
|
|
|
|
|
|
| 177 |
return filtered_df
|
| 178 |
|
| 179 |
leaderboard_df = filter_models(leaderboard_df, [t.to_str(" : ") for t in ModelType], list(NUMERIC_INTERVALS.keys()), [i.value.name for i in Precision], [i.value.name for i in AddSpecialTokens], [i.value.name for i in NumFewShots], False, False, False)
|
|
|
|
| 257 |
elem_id="filter-columns-num-few-shots",
|
| 258 |
)
|
| 259 |
|
| 260 |
+
leaderboard_df_filtered = filter_models(leaderboard_df, [t.to_str(" : ") for t in ModelType], list(NUMERIC_INTERVALS.keys()), [i.value.name for i in Precision], [i.value.name for i in AddSpecialTokens], [i.value.name for i in NumFewShots], False, False, False)
|
| 261 |
|
|
|
|
|
|
|
|
|
|
| 262 |
leaderboard_table = gr.components.Dataframe(
|
| 263 |
+
value=leaderboard_df_filtered,
|
| 264 |
+
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
| 265 |
+
datatype=TYPES,
|
| 266 |
elem_id="leaderboard-table",
|
| 267 |
interactive=False,
|
| 268 |
visible=True,
|
| 269 |
)
|
| 270 |
print("Leaderboard table initial value:")
|
| 271 |
+
print(leaderboard_table.value)
|
| 272 |
+
print(f"Leaderboard table shape: {leaderboard_table.value.shape if isinstance(leaderboard_table.value, pd.DataFrame) else 'Not a DataFrame'}")
|
| 273 |
|
| 274 |
# Dummy leaderboard for handling the case when the user uses backspace key
|
| 275 |
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|