Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Update app.py
Browse files
app.py
CHANGED
|
@@ -4,7 +4,6 @@ import gradio as gr
|
|
| 4 |
import pandas as pd
|
| 5 |
from apscheduler.schedulers.background import BackgroundScheduler
|
| 6 |
from huggingface_hub import snapshot_download
|
| 7 |
-
from decimal import Decimal
|
| 8 |
|
| 9 |
from src.about import (
|
| 10 |
CITATION_BUTTON_LABEL,
|
|
@@ -54,13 +53,7 @@ except Exception:
|
|
| 54 |
restart_space()
|
| 55 |
|
| 56 |
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
|
| 57 |
-
print(LEADERBOARD_DF.head())
|
| 58 |
original_df = LEADERBOARD_DF
|
| 59 |
-
print("Initial LEADERBOARD_DF:")
|
| 60 |
-
print(LEADERBOARD_DF.head())
|
| 61 |
-
print(f"LEADERBOARD_DF shape: {LEADERBOARD_DF.shape}")
|
| 62 |
-
print("LEADERBOARD_DF columns:")
|
| 63 |
-
print(LEADERBOARD_DF.columns.tolist())
|
| 64 |
leaderboard_df = original_df.copy()
|
| 65 |
(
|
| 66 |
finished_eval_queue_df,
|
|
@@ -83,10 +76,10 @@ def update_table(
|
|
| 83 |
show_flagged: bool,
|
| 84 |
query: str,
|
| 85 |
):
|
| 86 |
-
|
| 87 |
filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, add_special_tokens_query, num_few_shots_query, show_deleted, show_merges, show_flagged)
|
| 88 |
-
|
| 89 |
filtered_df = filter_queries(query, filtered_df)
|
|
|
|
|
|
|
| 90 |
|
| 91 |
df = select_columns(filtered_df, columns)
|
| 92 |
return df
|
|
@@ -136,75 +129,40 @@ def filter_queries(query: str, filtered_df: pd.DataFrame):
|
|
| 136 |
def filter_models(
|
| 137 |
df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, add_special_tokens_query: list, num_few_shots_query: list, show_deleted: bool, show_merges: bool, show_flagged: bool
|
| 138 |
) -> pd.DataFrame:
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
filtered_df = df.copy() # Create a copy to avoid modifying the original dataframe
|
| 145 |
|
| 146 |
-
#
|
| 147 |
-
#
|
| 148 |
-
# filtered_df = filtered_df[filtered_df[AutoEvalColumn.still_on_hub.name] == True]
|
| 149 |
|
| 150 |
-
|
|
|
|
| 151 |
|
| 152 |
-
# Type filter
|
| 153 |
type_emoji = [t[0] for t in type_query]
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
|
|
|
| 160 |
|
| 161 |
-
print(f"After type filter: {filtered_df.shape}")
|
| 162 |
-
|
| 163 |
-
# Precision filter
|
| 164 |
-
precision_query = precision_query + ['Unknown', '?']
|
| 165 |
-
filtered_df = filtered_df[filtered_df[AutoEvalColumn.precision.name].isin(precision_query)]
|
| 166 |
-
print(f"After precision filter: {filtered_df.shape}")
|
| 167 |
-
|
| 168 |
-
# Add Special Tokens filter
|
| 169 |
-
add_special_tokens_query = add_special_tokens_query + ["Unknown"]
|
| 170 |
-
filtered_df = filtered_df[filtered_df[AutoEvalColumn.add_special_tokens.name].isin(add_special_tokens_query)]
|
| 171 |
-
print(f"After add_special_tokens filter: {filtered_df.shape}")
|
| 172 |
-
|
| 173 |
-
# Num Few Shots filter
|
| 174 |
-
num_few_shots_query = num_few_shots_query + ["Unknown"]
|
| 175 |
-
filtered_df = filtered_df[filtered_df[AutoEvalColumn.num_few_shots.name].isin(num_few_shots_query)]
|
| 176 |
-
print(f"After num_few_shots filter: {filtered_df.shape}")
|
| 177 |
|
| 178 |
-
# Size filter
|
| 179 |
numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
|
| 180 |
-
params_column = pd.to_numeric(
|
| 181 |
-
mask = params_column.apply(lambda x:
|
| 182 |
-
filtered_df = filtered_df[mask]
|
| 183 |
-
print(f"After size filter: {filtered_df.shape}")
|
| 184 |
-
|
| 185 |
-
if filtered_df.empty:
|
| 186 |
-
print("Warning: Filtered dataframe is empty!")
|
| 187 |
-
return pd.DataFrame(columns=df.columns) # Return an empty dataframe with the same columns
|
| 188 |
-
|
| 189 |
-
print("Filtered dataframe head:")
|
| 190 |
-
print(filtered_df.head())
|
| 191 |
-
print("Column names:")
|
| 192 |
-
print(filtered_df.columns.tolist())
|
| 193 |
-
print("Column data types:")
|
| 194 |
-
print(filtered_df.dtypes)
|
| 195 |
-
print("Final filtered dataframe sample:")
|
| 196 |
-
print(filtered_df.head().to_dict('records'))
|
| 197 |
-
|
| 198 |
-
print("Filtered DataFrame sample:")
|
| 199 |
-
print(filtered_df.head().to_dict('records'))
|
| 200 |
-
|
| 201 |
-
filtered_df = filtered_df.astype(str)
|
| 202 |
return filtered_df
|
| 203 |
|
| 204 |
-
|
| 205 |
-
|
|
|
|
| 206 |
|
| 207 |
-
|
|
|
|
| 208 |
|
| 209 |
demo = gr.Blocks(css=custom_css)
|
| 210 |
with demo:
|
|
@@ -285,48 +243,15 @@ with demo:
|
|
| 285 |
elem_id="filter-columns-num-few-shots",
|
| 286 |
)
|
| 287 |
|
| 288 |
-
# leaderboard_table = gr.components.Dataframe(
|
| 289 |
-
# value=leaderboard_df[
|
| 290 |
-
# [c.name for c in fields(AutoEvalColumn) if c.never_hidden]
|
| 291 |
-
# + shown_columns.value
|
| 292 |
-
# # + [AutoEvalColumn.dummy.name]
|
| 293 |
-
# ],
|
| 294 |
-
# headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
| 295 |
-
# datatype=TYPES,
|
| 296 |
-
# elem_id="leaderboard-table",
|
| 297 |
-
# interactive=False,
|
| 298 |
-
# visible=True,
|
| 299 |
-
# #column_widths=["2%", "33%"]
|
| 300 |
-
# )
|
| 301 |
-
filtered_df = filter_models(leaderboard_df, [t.to_str(" : ") for t in ModelType], list(NUMERIC_INTERVALS.keys()), [i.value.name for i in Precision], [i.value.name for i in AddSpecialTokens], [i.value.name for i in NumFewShots], False, False, False)
|
| 302 |
-
print("After filter_models:")
|
| 303 |
-
print(f"filtered_df shape: {filtered_df.shape}")
|
| 304 |
-
print("filtered_df columns:")
|
| 305 |
-
print(filtered_df.columns.tolist())
|
| 306 |
-
|
| 307 |
-
initial_data = [convert_decimal_to_str(item) for item in filtered_df.to_dict('records')]
|
| 308 |
-
headers = filtered_df.columns.tolist()
|
| 309 |
-
print("Filtered DataFrame contents:")
|
| 310 |
-
print(filtered_df.head().to_dict('records'))
|
| 311 |
-
print("Filtered DataFrame columns:")
|
| 312 |
-
print(filtered_df.columns.tolist())
|
| 313 |
-
filtered_df_without_T = filtered_df.drop('T', axis=1)
|
| 314 |
leaderboard_table = gr.components.Dataframe(
|
| 315 |
-
value=
|
| 316 |
-
headers=
|
| 317 |
-
datatype={col: "str" for col in
|
| 318 |
-
row_count=(len(filtered_df_without_T), "dynamic"),
|
| 319 |
-
col_count=(len(filtered_df_without_T.columns), "fixed"),
|
| 320 |
-
wrap=True,
|
| 321 |
elem_id="leaderboard-table",
|
| 322 |
interactive=False,
|
| 323 |
visible=True,
|
| 324 |
)
|
| 325 |
-
print(
|
| 326 |
-
print(initial_data[:5] if initial_data else "Empty")
|
| 327 |
-
print("Headers:")
|
| 328 |
-
print(headers)
|
| 329 |
-
print("After Dataframe initialization")
|
| 330 |
|
| 331 |
# Dummy leaderboard for handling the case when the user uses backspace key
|
| 332 |
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
|
|
|
| 4 |
import pandas as pd
|
| 5 |
from apscheduler.schedulers.background import BackgroundScheduler
|
| 6 |
from huggingface_hub import snapshot_download
|
|
|
|
| 7 |
|
| 8 |
from src.about import (
|
| 9 |
CITATION_BUTTON_LABEL,
|
|
|
|
| 53 |
restart_space()
|
| 54 |
|
| 55 |
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
|
|
|
|
| 56 |
original_df = LEADERBOARD_DF
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
leaderboard_df = original_df.copy()
|
| 58 |
(
|
| 59 |
finished_eval_queue_df,
|
|
|
|
| 76 |
show_flagged: bool,
|
| 77 |
query: str,
|
| 78 |
):
|
|
|
|
| 79 |
filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, add_special_tokens_query, num_few_shots_query, show_deleted, show_merges, show_flagged)
|
|
|
|
| 80 |
filtered_df = filter_queries(query, filtered_df)
|
| 81 |
+
print(f"Filter applied: query={query}, columns={columns}, type_query={type_query}, precision_query={precision_query}")
|
| 82 |
+
print(filtered_df.head()) # フィルタ後のデータを確認
|
| 83 |
|
| 84 |
df = select_columns(filtered_df, columns)
|
| 85 |
return df
|
|
|
|
| 129 |
def filter_models(
|
| 130 |
df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, add_special_tokens_query: list, num_few_shots_query: list, show_deleted: bool, show_merges: bool, show_flagged: bool
|
| 131 |
) -> pd.DataFrame:
|
| 132 |
+
# Show all models
|
| 133 |
+
if show_deleted:
|
| 134 |
+
filtered_df = df
|
| 135 |
+
else: # Show only still on the hub models
|
| 136 |
+
filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]
|
|
|
|
| 137 |
|
| 138 |
+
#if not show_merges:
|
| 139 |
+
# filtered_df = filtered_df[filtered_df[AutoEvalColumn.merged.name] == False]
|
|
|
|
| 140 |
|
| 141 |
+
#if not show_flagged:
|
| 142 |
+
# filtered_df = filtered_df[filtered_df[AutoEvalColumn.flagged.name] == False]
|
| 143 |
|
|
|
|
| 144 |
type_emoji = [t[0] for t in type_query]
|
| 145 |
+
filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
|
| 146 |
+
filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
|
| 147 |
+
filtered_df = filtered_df.loc[df[AutoEvalColumn.add_special_tokens.name].isin(add_special_tokens_query)]
|
| 148 |
+
filtered_df = filtered_df.loc[df[AutoEvalColumn.num_few_shots.name].isin(num_few_shots_query)]
|
| 149 |
+
print("Filtered DataFrame shape:", filtered_df.shape)
|
| 150 |
+
print("Filtered DataFrame columns:", filtered_df.columns.tolist())
|
| 151 |
+
print("Filtered DataFrame sample:", filtered_df.head().to_dict('records'))
|
| 152 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 153 |
|
|
|
|
| 154 |
numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
|
| 155 |
+
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
|
| 156 |
+
mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
|
| 157 |
+
filtered_df = filtered_df.loc[mask]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 158 |
return filtered_df
|
| 159 |
|
| 160 |
+
filtered_df = filter_models(leaderboard_df, [t.to_str(" : ") for t in ModelType], list(NUMERIC_INTERVALS.keys()), [i.value.name for i in Precision], [i.value.name for i in AddSpecialTokens], [i.value.name for i in NumFewShots], False, False, False)
|
| 161 |
+
display_columns = [c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value
|
| 162 |
+
display_data = filtered_df[display_columns].to_dict('records')
|
| 163 |
|
| 164 |
+
print("Display columns:", display_columns)
|
| 165 |
+
print("Display data sample:", display_data[:1])
|
| 166 |
|
| 167 |
demo = gr.Blocks(css=custom_css)
|
| 168 |
with demo:
|
|
|
|
| 243 |
elem_id="filter-columns-num-few-shots",
|
| 244 |
)
|
| 245 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 246 |
leaderboard_table = gr.components.Dataframe(
|
| 247 |
+
value=display_data,
|
| 248 |
+
headers=display_columns,
|
| 249 |
+
datatype={col: str(TYPES.get(col, "str")) for col in display_columns},
|
|
|
|
|
|
|
|
|
|
| 250 |
elem_id="leaderboard-table",
|
| 251 |
interactive=False,
|
| 252 |
visible=True,
|
| 253 |
)
|
| 254 |
+
print(leaderboard_df.head()) # リーダーボードテーブルに渡される前のデータを確認
|
|
|
|
|
|
|
|
|
|
|
|
|
| 255 |
|
| 256 |
# Dummy leaderboard for handling the case when the user uses backspace key
|
| 257 |
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|