Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Clean up
Browse files
app.py
CHANGED
|
@@ -65,75 +65,86 @@ except Exception:
|
|
| 65 |
|
| 66 |
|
| 67 |
# Searching and filtering
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
|
|
|
| 71 |
type_query: list,
|
| 72 |
-
precision_query: str,
|
| 73 |
size_query: list,
|
|
|
|
| 74 |
add_special_tokens_query: list,
|
| 75 |
num_few_shots_query: list,
|
| 76 |
show_deleted: bool,
|
| 77 |
show_merges: bool,
|
| 78 |
show_flagged: bool,
|
| 79 |
-
|
| 80 |
-
)
|
| 81 |
-
print(
|
| 82 |
-
f"Update table called with: type_query={type_query}, precision_query={precision_query}, size_query={size_query}"
|
| 83 |
-
)
|
| 84 |
-
print(f"hidden_df shape before filtering: {hidden_df.shape}")
|
| 85 |
|
| 86 |
-
filtered_df =
|
| 87 |
-
hidden_df,
|
| 88 |
-
type_query,
|
| 89 |
-
size_query,
|
| 90 |
-
precision_query,
|
| 91 |
-
add_special_tokens_query,
|
| 92 |
-
num_few_shots_query,
|
| 93 |
-
show_deleted,
|
| 94 |
-
show_merges,
|
| 95 |
-
show_flagged,
|
| 96 |
-
)
|
| 97 |
-
print(f"filtered_df shape after filter_models: {filtered_df.shape}")
|
| 98 |
|
| 99 |
-
|
| 100 |
-
|
|
|
|
|
|
|
|
|
|
| 101 |
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
)
|
| 105 |
-
print("Filtered dataframe head:")
|
| 106 |
-
print(filtered_df.head())
|
| 107 |
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
|
|
|
|
|
|
|
|
|
|
| 114 |
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 121 |
|
| 122 |
|
| 123 |
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
|
| 124 |
return df[(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))]
|
| 125 |
|
| 126 |
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 137 |
|
| 138 |
|
| 139 |
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
|
|
@@ -169,80 +180,59 @@ def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
|
|
| 169 |
return filtered_df
|
| 170 |
|
| 171 |
|
| 172 |
-
def
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
if query != "":
|
| 176 |
-
queries = [q.strip() for q in query.split(";")]
|
| 177 |
-
for _q in queries:
|
| 178 |
-
_q = _q.strip()
|
| 179 |
-
if _q != "":
|
| 180 |
-
temp_filtered_df = search_table(filtered_df, _q)
|
| 181 |
-
if len(temp_filtered_df) > 0:
|
| 182 |
-
final_df.append(temp_filtered_df)
|
| 183 |
-
if len(final_df) > 0:
|
| 184 |
-
filtered_df = pd.concat(final_df)
|
| 185 |
-
filtered_df = filtered_df.drop_duplicates(
|
| 186 |
-
subset=[AutoEvalColumn.model.name, AutoEvalColumn.precision.name, AutoEvalColumn.revision.name]
|
| 187 |
-
)
|
| 188 |
-
|
| 189 |
-
return filtered_df
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
def filter_models(
|
| 193 |
-
df: pd.DataFrame,
|
| 194 |
type_query: list,
|
|
|
|
| 195 |
size_query: list,
|
| 196 |
-
precision_query: list,
|
| 197 |
add_special_tokens_query: list,
|
| 198 |
num_few_shots_query: list,
|
| 199 |
show_deleted: bool,
|
| 200 |
show_merges: bool,
|
| 201 |
show_flagged: bool,
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
print(
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
# Model Type フィルタリング
|
| 209 |
-
type_column = "T" if "T" in df.columns else "Type_"
|
| 210 |
-
type_emoji = [t.split()[0] for t in type_query]
|
| 211 |
-
filtered_df = df[df[type_column].isin(type_emoji)]
|
| 212 |
-
print(f"After type filter: {filtered_df.shape}")
|
| 213 |
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 217 |
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
size_mask = filtered_df["#Params (B)"].isna() | (filtered_df["#Params (B)"] == 0)
|
| 221 |
-
else:
|
| 222 |
-
size_mask = filtered_df["#Params (B)"].apply(
|
| 223 |
-
lambda x: any(x in NUMERIC_INTERVALS[s] for s in size_query if s != "Unknown")
|
| 224 |
-
)
|
| 225 |
-
filtered_df = filtered_df[size_mask]
|
| 226 |
-
print(f"After size filter: {filtered_df.shape}")
|
| 227 |
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
|
|
|
|
|
|
| 231 |
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
|
| 238 |
-
# Show deleted models フィルタリング
|
| 239 |
-
if not show_deleted:
|
| 240 |
-
filtered_df = filtered_df[filtered_df["Available on the hub"]]
|
| 241 |
-
print(f"After show_deleted filter: {filtered_df.shape}")
|
| 242 |
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
return
|
|
|
|
|
|
|
|
|
|
| 246 |
|
| 247 |
|
| 248 |
# Prepare the dataframes
|
|
|
|
| 65 |
|
| 66 |
|
| 67 |
# Searching and filtering
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
def filter_models(
|
| 71 |
+
df: pd.DataFrame,
|
| 72 |
type_query: list,
|
|
|
|
| 73 |
size_query: list,
|
| 74 |
+
precision_query: list,
|
| 75 |
add_special_tokens_query: list,
|
| 76 |
num_few_shots_query: list,
|
| 77 |
show_deleted: bool,
|
| 78 |
show_merges: bool,
|
| 79 |
show_flagged: bool,
|
| 80 |
+
) -> pd.DataFrame:
|
| 81 |
+
print(f"Initial df shape: {df.shape}")
|
| 82 |
+
print(f"Initial df content:\n{df}")
|
|
|
|
|
|
|
|
|
|
| 83 |
|
| 84 |
+
filtered_df = df
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
|
| 86 |
+
# Model Type フィルタリング
|
| 87 |
+
type_column = "T" if "T" in df.columns else "Type_"
|
| 88 |
+
type_emoji = [t.split()[0] for t in type_query]
|
| 89 |
+
filtered_df = df[df[type_column].isin(type_emoji)]
|
| 90 |
+
print(f"After type filter: {filtered_df.shape}")
|
| 91 |
|
| 92 |
+
# Precision フィルタリング
|
| 93 |
+
filtered_df = filtered_df[filtered_df["Precision"].isin(precision_query + ["Unknown", "?"])]
|
| 94 |
+
print(f"After precision filter: {filtered_df.shape}")
|
|
|
|
|
|
|
| 95 |
|
| 96 |
+
# Model Size フィルタリング
|
| 97 |
+
if "Unknown" in size_query:
|
| 98 |
+
size_mask = filtered_df["#Params (B)"].isna() | (filtered_df["#Params (B)"] == 0)
|
| 99 |
+
else:
|
| 100 |
+
size_mask = filtered_df["#Params (B)"].apply(
|
| 101 |
+
lambda x: any(x in NUMERIC_INTERVALS[s] for s in size_query if s != "Unknown")
|
| 102 |
+
)
|
| 103 |
+
filtered_df = filtered_df[size_mask]
|
| 104 |
+
print(f"After size filter: {filtered_df.shape}")
|
| 105 |
|
| 106 |
+
# Add Special Tokens フィルタリング
|
| 107 |
+
filtered_df = filtered_df[filtered_df["Add Special Tokens"].isin(add_special_tokens_query + ["Unknown", "?"])]
|
| 108 |
+
print(f"After add_special_tokens filter: {filtered_df.shape}")
|
| 109 |
|
| 110 |
+
# Num Few Shots フィルタリング
|
| 111 |
+
filtered_df = filtered_df[
|
| 112 |
+
filtered_df["Few-shot"].astype(str).isin([str(x) for x in num_few_shots_query] + ["Unknown", "?"])
|
| 113 |
+
]
|
| 114 |
+
print(f"After num_few_shots filter: {filtered_df.shape}")
|
| 115 |
+
|
| 116 |
+
# Show deleted models フィルタリング
|
| 117 |
+
if not show_deleted:
|
| 118 |
+
filtered_df = filtered_df[filtered_df["Available on the hub"]]
|
| 119 |
+
print(f"After show_deleted filter: {filtered_df.shape}")
|
| 120 |
+
|
| 121 |
+
print("Filtered dataframe head:")
|
| 122 |
+
print(filtered_df.head())
|
| 123 |
+
return filtered_df
|
| 124 |
|
| 125 |
|
| 126 |
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
|
| 127 |
return df[(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))]
|
| 128 |
|
| 129 |
|
| 130 |
+
def filter_queries(query: str, filtered_df: pd.DataFrame):
|
| 131 |
+
"""Added by Abishek"""
|
| 132 |
+
final_df = []
|
| 133 |
+
if query != "":
|
| 134 |
+
queries = [q.strip() for q in query.split(";")]
|
| 135 |
+
for _q in queries:
|
| 136 |
+
_q = _q.strip()
|
| 137 |
+
if _q != "":
|
| 138 |
+
temp_filtered_df = search_table(filtered_df, _q)
|
| 139 |
+
if len(temp_filtered_df) > 0:
|
| 140 |
+
final_df.append(temp_filtered_df)
|
| 141 |
+
if len(final_df) > 0:
|
| 142 |
+
filtered_df = pd.concat(final_df)
|
| 143 |
+
filtered_df = filtered_df.drop_duplicates(
|
| 144 |
+
subset=[AutoEvalColumn.model.name, AutoEvalColumn.precision.name, AutoEvalColumn.revision.name]
|
| 145 |
+
)
|
| 146 |
+
|
| 147 |
+
return filtered_df
|
| 148 |
|
| 149 |
|
| 150 |
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
|
|
|
|
| 180 |
return filtered_df
|
| 181 |
|
| 182 |
|
| 183 |
+
def update_table(
|
| 184 |
+
hidden_df: pd.DataFrame,
|
| 185 |
+
columns: list,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 186 |
type_query: list,
|
| 187 |
+
precision_query: str,
|
| 188 |
size_query: list,
|
|
|
|
| 189 |
add_special_tokens_query: list,
|
| 190 |
num_few_shots_query: list,
|
| 191 |
show_deleted: bool,
|
| 192 |
show_merges: bool,
|
| 193 |
show_flagged: bool,
|
| 194 |
+
query: str,
|
| 195 |
+
):
|
| 196 |
+
print(
|
| 197 |
+
f"Update table called with: type_query={type_query}, precision_query={precision_query}, size_query={size_query}"
|
| 198 |
+
)
|
| 199 |
+
print(f"hidden_df shape before filtering: {hidden_df.shape}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 200 |
|
| 201 |
+
filtered_df = filter_models(
|
| 202 |
+
hidden_df,
|
| 203 |
+
type_query,
|
| 204 |
+
size_query,
|
| 205 |
+
precision_query,
|
| 206 |
+
add_special_tokens_query,
|
| 207 |
+
num_few_shots_query,
|
| 208 |
+
show_deleted,
|
| 209 |
+
show_merges,
|
| 210 |
+
show_flagged,
|
| 211 |
+
)
|
| 212 |
+
print(f"filtered_df shape after filter_models: {filtered_df.shape}")
|
| 213 |
|
| 214 |
+
filtered_df = filter_queries(query, filtered_df)
|
| 215 |
+
print(f"filtered_df shape after filter_queries: {filtered_df.shape}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 216 |
|
| 217 |
+
print(
|
| 218 |
+
f"Filter applied: query={query}, columns={columns}, type_query={type_query}, precision_query={precision_query}"
|
| 219 |
+
)
|
| 220 |
+
print("Filtered dataframe head:")
|
| 221 |
+
print(filtered_df.head())
|
| 222 |
|
| 223 |
+
df = select_columns(filtered_df, columns)
|
| 224 |
+
print(f"Final df shape: {df.shape}")
|
| 225 |
+
print("Final dataframe head:")
|
| 226 |
+
print(df.head())
|
| 227 |
+
return df
|
| 228 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 229 |
|
| 230 |
+
def load_query(request: gr.Request): # triggered only once at startup => read query parameter if it exists
|
| 231 |
+
query = request.query_params.get("query") or ""
|
| 232 |
+
return (
|
| 233 |
+
query,
|
| 234 |
+
query,
|
| 235 |
+
) # return one for the "search_bar", one for a hidden component that triggers a reload only if value has changed
|
| 236 |
|
| 237 |
|
| 238 |
# Prepare the dataframes
|