Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Remove backend library info
Browse files- app.py +0 -17
- src/display/utils.py +0 -12
- src/populate.py +0 -1
app.py
CHANGED
|
@@ -95,7 +95,6 @@ def filter_models(
|
|
| 95 |
num_few_shots_query: list,
|
| 96 |
version_query: list,
|
| 97 |
vllm_query: list,
|
| 98 |
-
# backend_query: list,
|
| 99 |
) -> pd.DataFrame:
|
| 100 |
print(f"Initial df shape: {df.shape}")
|
| 101 |
print(f"Initial df content:\n{df}")
|
|
@@ -137,10 +136,6 @@ def filter_models(
|
|
| 137 |
filtered_df = filtered_df[filtered_df["vllm version"].isin(vllm_query)]
|
| 138 |
print(f"After vllm version filter: {filtered_df.shape}")
|
| 139 |
|
| 140 |
-
# Backend フィルタリング
|
| 141 |
-
# filtered_df = filtered_df[filtered_df["Backend Library"].isin(backend_query)]
|
| 142 |
-
# print(f"After backend filter: {filtered_df.shape}")
|
| 143 |
-
|
| 144 |
print("Filtered dataframe head:")
|
| 145 |
print(filtered_df.head())
|
| 146 |
return filtered_df
|
|
@@ -191,7 +186,6 @@ def update_table(
|
|
| 191 |
num_few_shots_query: list,
|
| 192 |
version_query: list,
|
| 193 |
vllm_query: list,
|
| 194 |
-
# backend_query: list,
|
| 195 |
query: str,
|
| 196 |
*columns,
|
| 197 |
):
|
|
@@ -209,7 +203,6 @@ def update_table(
|
|
| 209 |
num_few_shots_query,
|
| 210 |
version_query,
|
| 211 |
vllm_query,
|
| 212 |
-
# backend_query,
|
| 213 |
)
|
| 214 |
print(f"filtered_df shape after filter_models: {filtered_df.shape}")
|
| 215 |
|
|
@@ -242,7 +235,6 @@ leaderboard_df = filter_models(
|
|
| 242 |
[i.value.name for i in NumFewShots],
|
| 243 |
[i.value.name for i in Version],
|
| 244 |
[i.value.name for i in VllmVersion],
|
| 245 |
-
# [i.value.name for i in Backend],
|
| 246 |
)
|
| 247 |
# DataFrameの初期化部分のみを修正
|
| 248 |
INITIAL_COLUMNS = ["T"] + [
|
|
@@ -469,13 +461,6 @@ with gr.Blocks() as demo_leaderboard:
|
|
| 469 |
elem_id="filter-columns-vllm",
|
| 470 |
)
|
| 471 |
|
| 472 |
-
# filter_columns_backend = gr.CheckboxGroup(
|
| 473 |
-
# label="Backend Library",
|
| 474 |
-
# choices=[i.value.name for i in Backend],
|
| 475 |
-
# value=[i.value.name for i in Backend],
|
| 476 |
-
# elem_id="filter-columns-backend",
|
| 477 |
-
# )
|
| 478 |
-
|
| 479 |
leaderboard_table = gr.Dataframe(
|
| 480 |
value=leaderboard_df,
|
| 481 |
headers=INITIAL_COLUMNS,
|
|
@@ -516,7 +501,6 @@ with gr.Blocks() as demo_leaderboard:
|
|
| 516 |
filter_columns_num_few_shots.change,
|
| 517 |
filter_columns_version.change,
|
| 518 |
filter_columns_vllm.change,
|
| 519 |
-
# filter_columns_backend.change,
|
| 520 |
search_bar.submit,
|
| 521 |
]
|
| 522 |
+ [shown_columns.change for shown_columns in shown_columns_dict.values()],
|
|
@@ -529,7 +513,6 @@ with gr.Blocks() as demo_leaderboard:
|
|
| 529 |
filter_columns_num_few_shots,
|
| 530 |
filter_columns_version,
|
| 531 |
filter_columns_vllm,
|
| 532 |
-
# filter_columns_backend,
|
| 533 |
search_bar,
|
| 534 |
]
|
| 535 |
+ [shown_columns for shown_columns in shown_columns_dict.values()],
|
|
|
|
| 95 |
num_few_shots_query: list,
|
| 96 |
version_query: list,
|
| 97 |
vllm_query: list,
|
|
|
|
| 98 |
) -> pd.DataFrame:
|
| 99 |
print(f"Initial df shape: {df.shape}")
|
| 100 |
print(f"Initial df content:\n{df}")
|
|
|
|
| 136 |
filtered_df = filtered_df[filtered_df["vllm version"].isin(vllm_query)]
|
| 137 |
print(f"After vllm version filter: {filtered_df.shape}")
|
| 138 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 139 |
print("Filtered dataframe head:")
|
| 140 |
print(filtered_df.head())
|
| 141 |
return filtered_df
|
|
|
|
| 186 |
num_few_shots_query: list,
|
| 187 |
version_query: list,
|
| 188 |
vllm_query: list,
|
|
|
|
| 189 |
query: str,
|
| 190 |
*columns,
|
| 191 |
):
|
|
|
|
| 203 |
num_few_shots_query,
|
| 204 |
version_query,
|
| 205 |
vllm_query,
|
|
|
|
| 206 |
)
|
| 207 |
print(f"filtered_df shape after filter_models: {filtered_df.shape}")
|
| 208 |
|
|
|
|
| 235 |
[i.value.name for i in NumFewShots],
|
| 236 |
[i.value.name for i in Version],
|
| 237 |
[i.value.name for i in VllmVersion],
|
|
|
|
| 238 |
)
|
| 239 |
# DataFrameの初期化部分のみを修正
|
| 240 |
INITIAL_COLUMNS = ["T"] + [
|
|
|
|
| 461 |
elem_id="filter-columns-vllm",
|
| 462 |
)
|
| 463 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 464 |
leaderboard_table = gr.Dataframe(
|
| 465 |
value=leaderboard_df,
|
| 466 |
headers=INITIAL_COLUMNS,
|
|
|
|
| 501 |
filter_columns_num_few_shots.change,
|
| 502 |
filter_columns_version.change,
|
| 503 |
filter_columns_vllm.change,
|
|
|
|
| 504 |
search_bar.submit,
|
| 505 |
]
|
| 506 |
+ [shown_columns.change for shown_columns in shown_columns_dict.values()],
|
|
|
|
| 513 |
filter_columns_num_few_shots,
|
| 514 |
filter_columns_version,
|
| 515 |
filter_columns_vllm,
|
|
|
|
| 516 |
search_bar,
|
| 517 |
]
|
| 518 |
+ [shown_columns for shown_columns in shown_columns_dict.values()],
|
src/display/utils.py
CHANGED
|
@@ -61,7 +61,6 @@ auto_eval_column_dict.append(
|
|
| 61 |
["llm_jp_eval_version", ColumnContent, ColumnContent("llm-jp-eval version", "str", False)]
|
| 62 |
)
|
| 63 |
auto_eval_column_dict.append(["vllm_version", ColumnContent, ColumnContent("vllm version", "str", False)])
|
| 64 |
-
auto_eval_column_dict.append(["backend", ColumnContent, ColumnContent("Backend Library", "str", False, dummy=True)])
|
| 65 |
auto_eval_column_dict.append(["dummy", ColumnContent, ColumnContent("model_name_for_query", "str", False, dummy=True)])
|
| 66 |
auto_eval_column_dict.append(["row_id", ColumnContent, ColumnContent("ID", "number", False, dummy=True)])
|
| 67 |
|
|
@@ -160,17 +159,6 @@ class Version(Enum):
|
|
| 160 |
return Version.Unknown
|
| 161 |
|
| 162 |
|
| 163 |
-
class Backend(Enum):
|
| 164 |
-
vllm = ModelDetails("vllm")
|
| 165 |
-
Unknown = ModelDetails("?")
|
| 166 |
-
|
| 167 |
-
def from_str(backend):
|
| 168 |
-
if backend == "vllm":
|
| 169 |
-
return Backend.vllm
|
| 170 |
-
else:
|
| 171 |
-
return Backend.Unknown
|
| 172 |
-
|
| 173 |
-
|
| 174 |
class VllmVersion(Enum):
|
| 175 |
current = ModelDetails("v0.6.3.post1")
|
| 176 |
Unknown = ModelDetails("?")
|
|
|
|
| 61 |
["llm_jp_eval_version", ColumnContent, ColumnContent("llm-jp-eval version", "str", False)]
|
| 62 |
)
|
| 63 |
auto_eval_column_dict.append(["vllm_version", ColumnContent, ColumnContent("vllm version", "str", False)])
|
|
|
|
| 64 |
auto_eval_column_dict.append(["dummy", ColumnContent, ColumnContent("model_name_for_query", "str", False, dummy=True)])
|
| 65 |
auto_eval_column_dict.append(["row_id", ColumnContent, ColumnContent("ID", "number", False, dummy=True)])
|
| 66 |
|
|
|
|
| 159 |
return Version.Unknown
|
| 160 |
|
| 161 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 162 |
class VllmVersion(Enum):
|
| 163 |
current = ModelDetails("v0.6.3.post1")
|
| 164 |
Unknown = ModelDetails("?")
|
src/populate.py
CHANGED
|
@@ -15,7 +15,6 @@ def get_leaderboard_df(contents_repo: str, cols: list, benchmark_cols: list) ->
|
|
| 15 |
df = datasets.load_dataset(contents_repo, split="train").to_pandas()
|
| 16 |
df["Model"] = df["model"].map(make_clickable_model)
|
| 17 |
df["T"] = df["model_type"].map(lambda x: x.split(":")[0].strip())
|
| 18 |
-
df["Backend Library"] = "vllm"
|
| 19 |
df = df.rename(columns={task.value.metric: task.value.col_name for task in Tasks})
|
| 20 |
df = df.rename(
|
| 21 |
columns={
|
|
|
|
| 15 |
df = datasets.load_dataset(contents_repo, split="train").to_pandas()
|
| 16 |
df["Model"] = df["model"].map(make_clickable_model)
|
| 17 |
df["T"] = df["model_type"].map(lambda x: x.split(":")[0].strip())
|
|
|
|
| 18 |
df = df.rename(columns={task.value.metric: task.value.col_name for task in Tasks})
|
| 19 |
df = df.rename(
|
| 20 |
columns={
|