Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Delete hidden_leaderboard
Browse files
app.py
CHANGED
|
@@ -190,7 +190,6 @@ def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
|
|
| 190 |
|
| 191 |
|
| 192 |
def update_table(
|
| 193 |
-
hidden_df: pd.DataFrame,
|
| 194 |
type_query: list,
|
| 195 |
precision_query: str,
|
| 196 |
size_query: list,
|
|
@@ -205,10 +204,9 @@ def update_table(
|
|
| 205 |
print(
|
| 206 |
f"Update table called with: type_query={type_query}, precision_query={precision_query}, size_query={size_query}"
|
| 207 |
)
|
| 208 |
-
print(f"hidden_df shape before filtering: {hidden_df.shape}")
|
| 209 |
|
| 210 |
filtered_df = filter_models(
|
| 211 |
-
|
| 212 |
type_query,
|
| 213 |
size_query,
|
| 214 |
precision_query,
|
|
@@ -306,8 +304,8 @@ def toggle_all_categories(action: str) -> list[gr.CheckboxGroup]:
|
|
| 306 |
return results
|
| 307 |
|
| 308 |
|
| 309 |
-
def plot_size_vs_score(df_filtered: pd.DataFrame
|
| 310 |
-
df =
|
| 311 |
df = df[df["#Params (B)"] > 0]
|
| 312 |
df = df[["model_name_for_query", "#Params (B)", "AVG", "Few-shot"]]
|
| 313 |
df["AVG"] = df["AVG"].astype(float)
|
|
@@ -333,8 +331,8 @@ TASK_AVG_NAME_MAP = {
|
|
| 333 |
}
|
| 334 |
|
| 335 |
|
| 336 |
-
def plot_average_scores(df_filtered: pd.DataFrame
|
| 337 |
-
df =
|
| 338 |
df = df[["model_name_for_query", "Few-shot"] + list(TASK_AVG_NAME_MAP.keys())]
|
| 339 |
df = df.rename(columns={"model_name_for_query": "Model", "Few-shot": "n-shot"})
|
| 340 |
df = df.rename(columns=TASK_AVG_NAME_MAP)
|
|
@@ -497,14 +495,6 @@ with gr.Blocks() as demo_leaderboard:
|
|
| 497 |
graph_size_vs_score = gr.Plot(label="Model size vs. Average score")
|
| 498 |
graph_average_scores = gr.Plot(label="Model Performance across Task Categories")
|
| 499 |
|
| 500 |
-
# Dummy leaderboard for handling the case when the user uses backspace key
|
| 501 |
-
hidden_leaderboard_table_for_search = gr.Dataframe(
|
| 502 |
-
value=ORIGINAL_DF[COLS],
|
| 503 |
-
headers=COLS,
|
| 504 |
-
datatype=TYPES,
|
| 505 |
-
visible=False,
|
| 506 |
-
)
|
| 507 |
-
|
| 508 |
# Define a hidden component that will trigger a reload only if a query parameter has been set
|
| 509 |
hidden_search_bar = gr.Textbox(value="", visible=False)
|
| 510 |
|
|
@@ -542,7 +532,6 @@ with gr.Blocks() as demo_leaderboard:
|
|
| 542 |
+ [shown_columns.change for shown_columns in shown_columns_dict.values()],
|
| 543 |
fn=update_table,
|
| 544 |
inputs=[
|
| 545 |
-
hidden_leaderboard_table_for_search,
|
| 546 |
filter_columns_type,
|
| 547 |
filter_columns_precision,
|
| 548 |
filter_columns_size,
|
|
@@ -558,7 +547,7 @@ with gr.Blocks() as demo_leaderboard:
|
|
| 558 |
|
| 559 |
leaderboard_table.change(
|
| 560 |
fn=plot_size_vs_score,
|
| 561 |
-
inputs=
|
| 562 |
outputs=graph_size_vs_score,
|
| 563 |
api_name=False,
|
| 564 |
queue=False,
|
|
@@ -566,7 +555,7 @@ with gr.Blocks() as demo_leaderboard:
|
|
| 566 |
|
| 567 |
leaderboard_table.change(
|
| 568 |
fn=plot_average_scores,
|
| 569 |
-
inputs=
|
| 570 |
outputs=graph_average_scores,
|
| 571 |
api_name=False,
|
| 572 |
queue=False,
|
|
|
|
| 190 |
|
| 191 |
|
| 192 |
def update_table(
|
|
|
|
| 193 |
type_query: list,
|
| 194 |
precision_query: str,
|
| 195 |
size_query: list,
|
|
|
|
| 204 |
print(
|
| 205 |
f"Update table called with: type_query={type_query}, precision_query={precision_query}, size_query={size_query}"
|
| 206 |
)
|
|
|
|
| 207 |
|
| 208 |
filtered_df = filter_models(
|
| 209 |
+
ORIGINAL_DF,
|
| 210 |
type_query,
|
| 211 |
size_query,
|
| 212 |
precision_query,
|
|
|
|
| 304 |
return results
|
| 305 |
|
| 306 |
|
| 307 |
+
def plot_size_vs_score(df_filtered: pd.DataFrame) -> go.Figure:
|
| 308 |
+
df = ORIGINAL_DF[ORIGINAL_DF[AutoEvalColumn.row_id.name].isin(df_filtered[AutoEvalColumn.row_id.name])]
|
| 309 |
df = df[df["#Params (B)"] > 0]
|
| 310 |
df = df[["model_name_for_query", "#Params (B)", "AVG", "Few-shot"]]
|
| 311 |
df["AVG"] = df["AVG"].astype(float)
|
|
|
|
| 331 |
}
|
| 332 |
|
| 333 |
|
| 334 |
+
def plot_average_scores(df_filtered: pd.DataFrame) -> go.Figure:
|
| 335 |
+
df = ORIGINAL_DF[ORIGINAL_DF[AutoEvalColumn.row_id.name].isin(df_filtered[AutoEvalColumn.row_id.name])]
|
| 336 |
df = df[["model_name_for_query", "Few-shot"] + list(TASK_AVG_NAME_MAP.keys())]
|
| 337 |
df = df.rename(columns={"model_name_for_query": "Model", "Few-shot": "n-shot"})
|
| 338 |
df = df.rename(columns=TASK_AVG_NAME_MAP)
|
|
|
|
| 495 |
graph_size_vs_score = gr.Plot(label="Model size vs. Average score")
|
| 496 |
graph_average_scores = gr.Plot(label="Model Performance across Task Categories")
|
| 497 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 498 |
# Define a hidden component that will trigger a reload only if a query parameter has been set
|
| 499 |
hidden_search_bar = gr.Textbox(value="", visible=False)
|
| 500 |
|
|
|
|
| 532 |
+ [shown_columns.change for shown_columns in shown_columns_dict.values()],
|
| 533 |
fn=update_table,
|
| 534 |
inputs=[
|
|
|
|
| 535 |
filter_columns_type,
|
| 536 |
filter_columns_precision,
|
| 537 |
filter_columns_size,
|
|
|
|
| 547 |
|
| 548 |
leaderboard_table.change(
|
| 549 |
fn=plot_size_vs_score,
|
| 550 |
+
inputs=leaderboard_table,
|
| 551 |
outputs=graph_size_vs_score,
|
| 552 |
api_name=False,
|
| 553 |
queue=False,
|
|
|
|
| 555 |
|
| 556 |
leaderboard_table.change(
|
| 557 |
fn=plot_average_scores,
|
| 558 |
+
inputs=leaderboard_table,
|
| 559 |
outputs=graph_average_scores,
|
| 560 |
api_name=False,
|
| 561 |
queue=False,
|