Spaces:
				
			
			
	
			
			
					
		Running
		
			on 
			
			CPU Upgrade
	
	
	
			
			
	
	
	
	
		
		
					
		Running
		
			on 
			
			CPU Upgrade
	| import os | |
| import gradio as gr | |
| import pandas as pd | |
| from apscheduler.schedulers.background import BackgroundScheduler | |
| from huggingface_hub import snapshot_download | |
| from src.about import ( | |
| BOTTOM_LOGO, | |
| CITATION_BUTTON_LABEL, | |
| CITATION_BUTTON_TEXT, | |
| EVALUATION_QUEUE_TEXT, | |
| INTRODUCTION_TEXT, | |
| LLM_BENCHMARKS_TEXT, | |
| TITLE, | |
| ) | |
| from src.display.css_html_js import custom_css | |
| from src.display.utils import ( | |
| BENCHMARK_COLS, | |
| COLS, | |
| EVAL_COLS, | |
| EVAL_TYPES, | |
| NUMERIC_INTERVALS, | |
| TYPES, | |
| AddSpecialTokens, | |
| AutoEvalColumn, | |
| ModelType, | |
| NumFewShots, | |
| Precision, | |
| WeightType, | |
| fields, | |
| ) | |
| from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO | |
| from src.populate import get_evaluation_queue_df, get_leaderboard_df | |
| from src.submission.submit import add_new_eval | |
| def restart_space(): | |
| API.restart_space(repo_id=REPO_ID) | |
| # Space initialization | |
| try: | |
| print(EVAL_REQUESTS_PATH) | |
| snapshot_download( | |
| repo_id=QUEUE_REPO, | |
| local_dir=EVAL_REQUESTS_PATH, | |
| repo_type="dataset", | |
| tqdm_class=None, | |
| etag_timeout=30, | |
| ) | |
| except Exception: | |
| restart_space() | |
| try: | |
| print(EVAL_RESULTS_PATH) | |
| snapshot_download( | |
| repo_id=RESULTS_REPO, | |
| local_dir=EVAL_RESULTS_PATH, | |
| repo_type="dataset", | |
| tqdm_class=None, | |
| etag_timeout=30, | |
| ) | |
| except Exception: | |
| restart_space() | |
| # Searching and filtering | |
| def update_table( | |
| hidden_df: pd.DataFrame, | |
| columns: list, | |
| type_query: list, | |
| precision_query: str, | |
| size_query: list, | |
| add_special_tokens_query: list, | |
| num_few_shots_query: list, | |
| show_deleted: bool, | |
| show_merges: bool, | |
| show_flagged: bool, | |
| query: str, | |
| ): | |
| print( | |
| f"Update table called with: type_query={type_query}, precision_query={precision_query}, size_query={size_query}" | |
| ) | |
| print(f"hidden_df shape before filtering: {hidden_df.shape}") | |
| filtered_df = filter_models( | |
| hidden_df, | |
| type_query, | |
| size_query, | |
| precision_query, | |
| add_special_tokens_query, | |
| num_few_shots_query, | |
| show_deleted, | |
| show_merges, | |
| show_flagged, | |
| ) | |
| print(f"filtered_df shape after filter_models: {filtered_df.shape}") | |
| filtered_df = filter_queries(query, filtered_df) | |
| print(f"filtered_df shape after filter_queries: {filtered_df.shape}") | |
| print( | |
| f"Filter applied: query={query}, columns={columns}, type_query={type_query}, precision_query={precision_query}" | |
| ) | |
| print("Filtered dataframe head:") | |
| print(filtered_df.head()) | |
| df = select_columns(filtered_df, columns) | |
| print(f"Final df shape: {df.shape}") | |
| print("Final dataframe head:") | |
| print(df.head()) | |
| return df | |
| def load_query(request: gr.Request): # triggered only once at startup => read query parameter if it exists | |
| query = request.query_params.get("query") or "" | |
| return ( | |
| query, | |
| query, | |
| ) # return one for the "search_bar", one for a hidden component that triggers a reload only if value has changed | |
| def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame: | |
| return df[(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))] | |
| # def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame: | |
| # always_here_cols = [ | |
| # AutoEvalColumn.model_type_symbol.name, | |
| # AutoEvalColumn.model.name, | |
| # ] | |
| # # We use COLS to maintain sorting | |
| # filtered_df = df[ | |
| # always_here_cols + [c for c in COLS if c in df.columns and c in columns]# + [AutoEvalColumn.dummy.name] | |
| # ] | |
| # return filtered_df | |
| def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame: | |
| always_here_cols = [ | |
| AutoEvalColumn.model_type_symbol.name, # 'T' | |
| AutoEvalColumn.model.name, # 'Model' | |
| ] | |
| # 'always_here_cols' を 'columns' から除外して重複を避ける | |
| columns = [c for c in columns if c not in always_here_cols] | |
| new_columns = always_here_cols + [c for c in COLS if c in df.columns and c in columns] | |
| # 重複を排除しつつ順序を維持 | |
| seen = set() | |
| unique_columns = [] | |
| for c in new_columns: | |
| if c not in seen: | |
| unique_columns.append(c) | |
| seen.add(c) | |
| # 'Model' カラムにリンクを含む形式で再構築 | |
| if "Model" in df.columns: | |
| df["Model"] = df["Model"].apply( | |
| lambda x: ( | |
| f'[{x.split(">")[-2].split("<")[0]}]({x.split("href=")[1].split(chr(34))[1]})' | |
| if isinstance(x, str) and "href=" in x | |
| else x | |
| ) | |
| ) | |
| # フィルタリングされたカラムでデータフレームを作成 | |
| filtered_df = df[unique_columns] | |
| return filtered_df | |
| def filter_queries(query: str, filtered_df: pd.DataFrame): | |
| """Added by Abishek""" | |
| final_df = [] | |
| if query != "": | |
| queries = [q.strip() for q in query.split(";")] | |
| for _q in queries: | |
| _q = _q.strip() | |
| if _q != "": | |
| temp_filtered_df = search_table(filtered_df, _q) | |
| if len(temp_filtered_df) > 0: | |
| final_df.append(temp_filtered_df) | |
| if len(final_df) > 0: | |
| filtered_df = pd.concat(final_df) | |
| filtered_df = filtered_df.drop_duplicates( | |
| subset=[AutoEvalColumn.model.name, AutoEvalColumn.precision.name, AutoEvalColumn.revision.name] | |
| ) | |
| return filtered_df | |
| def filter_models( | |
| df: pd.DataFrame, | |
| type_query: list, | |
| size_query: list, | |
| precision_query: list, | |
| add_special_tokens_query: list, | |
| num_few_shots_query: list, | |
| show_deleted: bool, | |
| show_merges: bool, | |
| show_flagged: bool, | |
| ) -> pd.DataFrame: | |
| print(f"Initial df shape: {df.shape}") | |
| print(f"Initial df content:\n{df}") | |
| filtered_df = df | |
| # Model Type フィルタリング | |
| type_column = "T" if "T" in df.columns else "Type_" | |
| type_emoji = [t.split()[0] for t in type_query] | |
| filtered_df = df[df[type_column].isin(type_emoji)] | |
| print(f"After type filter: {filtered_df.shape}") | |
| # Precision フィルタリング | |
| filtered_df = filtered_df[filtered_df["Precision"].isin(precision_query + ["Unknown", "?"])] | |
| print(f"After precision filter: {filtered_df.shape}") | |
| # Model Size フィルタリング | |
| if "Unknown" in size_query: | |
| size_mask = filtered_df["#Params (B)"].isna() | (filtered_df["#Params (B)"] == 0) | |
| else: | |
| size_mask = filtered_df["#Params (B)"].apply( | |
| lambda x: any(x in NUMERIC_INTERVALS[s] for s in size_query if s != "Unknown") | |
| ) | |
| filtered_df = filtered_df[size_mask] | |
| print(f"After size filter: {filtered_df.shape}") | |
| # Add Special Tokens フィルタリング | |
| filtered_df = filtered_df[filtered_df["Add Special Tokens"].isin(add_special_tokens_query + ["Unknown", "?"])] | |
| print(f"After add_special_tokens filter: {filtered_df.shape}") | |
| # Num Few Shots フィルタリング | |
| filtered_df = filtered_df[ | |
| filtered_df["Few-shot"].astype(str).isin([str(x) for x in num_few_shots_query] + ["Unknown", "?"]) | |
| ] | |
| print(f"After num_few_shots filter: {filtered_df.shape}") | |
| # Show deleted models フィルタリング | |
| if not show_deleted: | |
| filtered_df = filtered_df[filtered_df["Available on the hub"] == True] | |
| print(f"After show_deleted filter: {filtered_df.shape}") | |
| print("Filtered dataframe head:") | |
| print(filtered_df.head()) | |
| return filtered_df | |
| # Prepare leaderboard dataframes | |
| LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS) | |
| original_df = LEADERBOARD_DF | |
| leaderboard_df = original_df.copy() | |
| ( | |
| finished_eval_queue_df, | |
| running_eval_queue_df, | |
| pending_eval_queue_df, | |
| failed_eval_queue_df, | |
| ) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS) | |
| leaderboard_df = filter_models( | |
| leaderboard_df, | |
| [t.to_str(" : ") for t in ModelType], | |
| list(NUMERIC_INTERVALS.keys()), | |
| [i.value.name for i in Precision], | |
| [i.value.name for i in AddSpecialTokens], | |
| [i.value.name for i in NumFewShots], | |
| False, | |
| False, | |
| False, | |
| ) | |
| leaderboard_df_filtered = filter_models( | |
| leaderboard_df, | |
| [t.to_str(" : ") for t in ModelType], | |
| list(NUMERIC_INTERVALS.keys()), | |
| [i.value.name for i in Precision], | |
| [i.value.name for i in AddSpecialTokens], | |
| [i.value.name for i in NumFewShots], | |
| False, | |
| False, | |
| False, | |
| ) | |
| # initial_columns = [c.name for c in fields(AutoEvalColumn) if c.never_hidden or c.displayed_by_default] | |
| # leaderboard_df_filtered = select_columns(leaderboard_df_filtered, initial_columns) | |
| # leaderboard_table = gr.Dataframe( | |
| # value=leaderboard_df_filtered, | |
| # headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value, | |
| # datatype=TYPES, | |
| # elem_id="leaderboard-table", | |
| # interactive=False, | |
| # visible=True, | |
| # ) | |
| # DataFrameの初期化部分のみを修正 | |
| initial_columns = ["T"] + [ | |
| c.name for c in fields(AutoEvalColumn) if (c.never_hidden or c.displayed_by_default) and c.name != "T" | |
| ] | |
| leaderboard_df_filtered = select_columns(leaderboard_df, initial_columns) | |
| # Model列のリンク形式を修正 | |
| leaderboard_df_filtered["Model"] = leaderboard_df_filtered["Model"].apply( | |
| lambda x: ( | |
| f'[{x.split(">")[-2].split("<")[0]}]({x.split("href=")[1].split(chr(34))[1]})' | |
| if isinstance(x, str) and "href=" in x | |
| else x | |
| ) | |
| ) | |
| # 数値データを文字列に変換 | |
| for col in leaderboard_df_filtered.columns: | |
| if col not in ["T", "Model"]: | |
| leaderboard_df_filtered[col] = leaderboard_df_filtered[col].astype(str) | |
| # Leaderboard demo | |
| with gr.Blocks() as demo_leaderboard: | |
| with gr.Row(): | |
| with gr.Column(): | |
| with gr.Row(): | |
| search_bar = gr.Textbox( | |
| placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...", | |
| show_label=False, | |
| elem_id="search-bar", | |
| ) | |
| with gr.Row(): | |
| shown_columns = gr.CheckboxGroup( | |
| choices=[ | |
| c.name | |
| for c in fields(AutoEvalColumn) | |
| if not c.hidden and not c.never_hidden # and not c.dummy | |
| ], | |
| value=[ | |
| c.name | |
| for c in fields(AutoEvalColumn) | |
| if c.displayed_by_default and not c.hidden and not c.never_hidden | |
| ], | |
| label="Select columns to show", | |
| elem_id="column-select", | |
| interactive=True, | |
| ) | |
| with gr.Row(): | |
| deleted_models_visibility = gr.Checkbox(label="Show private/deleted models", value=False) | |
| merged_models_visibility = gr.Checkbox(label="Show merges", value=False) | |
| flagged_models_visibility = gr.Checkbox(label="Show flagged models", value=False) | |
| with gr.Column(min_width=320): | |
| filter_columns_type = gr.CheckboxGroup( | |
| label="Model types", | |
| choices=[t.to_str() for t in ModelType], | |
| value=[t.to_str() for t in ModelType], | |
| interactive=True, | |
| elem_id="filter-columns-type", | |
| ) | |
| filter_columns_precision = gr.CheckboxGroup( | |
| label="Precision", | |
| choices=[i.value.name for i in Precision], | |
| value=[i.value.name for i in Precision], | |
| interactive=True, | |
| elem_id="filter-columns-precision", | |
| ) | |
| filter_columns_size = gr.CheckboxGroup( | |
| label="Model sizes (in billions of parameters)", | |
| choices=list(NUMERIC_INTERVALS.keys()), | |
| value=list(NUMERIC_INTERVALS.keys()), | |
| interactive=True, | |
| elem_id="filter-columns-size", | |
| ) | |
| filter_columns_add_special_tokens = gr.CheckboxGroup( | |
| label="Add Special Tokens", | |
| choices=[i.value.name for i in AddSpecialTokens], | |
| value=[i.value.name for i in AddSpecialTokens], | |
| interactive=True, | |
| elem_id="filter-columns-add-special-tokens", | |
| ) | |
| filter_columns_num_few_shots = gr.CheckboxGroup( | |
| label="Num Few Shots", | |
| choices=[i.value.name for i in NumFewShots], | |
| value=[i.value.name for i in NumFewShots], | |
| interactive=True, | |
| elem_id="filter-columns-num-few-shots", | |
| ) | |
| # DataFrameコンポーネントの初期化 | |
| leaderboard_table = gr.Dataframe( | |
| value=leaderboard_df_filtered, | |
| headers=initial_columns, | |
| datatype=TYPES, | |
| elem_id="leaderboard-table", | |
| interactive=False, | |
| visible=True, | |
| ) | |
| # Dummy leaderboard for handling the case when the user uses backspace key | |
| hidden_leaderboard_table_for_search = gr.Dataframe( | |
| value=original_df[COLS], | |
| headers=COLS, | |
| datatype=TYPES, | |
| visible=False, | |
| ) | |
| # Define a hidden component that will trigger a reload only if a query parameter has been set | |
| hidden_search_bar = gr.Textbox(value="", visible=False) | |
| gr.on( | |
| triggers=[ | |
| hidden_search_bar.change, | |
| shown_columns.change, | |
| filter_columns_type.change, | |
| filter_columns_precision.change, | |
| filter_columns_size.change, | |
| filter_columns_add_special_tokens.change, | |
| filter_columns_num_few_shots.change, | |
| deleted_models_visibility.change, | |
| merged_models_visibility.change, | |
| flagged_models_visibility.change, | |
| search_bar.submit, | |
| ], | |
| fn=update_table, | |
| inputs=[ | |
| hidden_leaderboard_table_for_search, | |
| shown_columns, | |
| filter_columns_type, | |
| filter_columns_precision, | |
| filter_columns_size, | |
| filter_columns_add_special_tokens, | |
| filter_columns_num_few_shots, | |
| deleted_models_visibility, | |
| merged_models_visibility, | |
| flagged_models_visibility, | |
| search_bar, | |
| ], | |
| outputs=leaderboard_table, | |
| ) | |
| # Check query parameter once at startup and update search bar + hidden component | |
| demo_leaderboard.load(fn=load_query, outputs=[search_bar, hidden_search_bar]) | |
| # Submission demo | |
| with gr.Blocks() as demo_submission: | |
| with gr.Column(): | |
| with gr.Row(): | |
| gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text") | |
| with gr.Column(): | |
| with gr.Accordion( | |
| f"✅ Finished Evaluations ({len(finished_eval_queue_df)})", | |
| open=False, | |
| ): | |
| with gr.Row(): | |
| finished_eval_table = gr.Dataframe( | |
| value=finished_eval_queue_df, | |
| headers=EVAL_COLS, | |
| datatype=EVAL_TYPES, | |
| row_count=5, | |
| ) | |
| with gr.Accordion( | |
| f"🔄 Running Evaluation Queue ({len(running_eval_queue_df)})", | |
| open=False, | |
| ): | |
| with gr.Row(): | |
| running_eval_table = gr.Dataframe( | |
| value=running_eval_queue_df, | |
| headers=EVAL_COLS, | |
| datatype=EVAL_TYPES, | |
| row_count=5, | |
| ) | |
| with gr.Accordion( | |
| f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})", | |
| open=False, | |
| ): | |
| with gr.Row(): | |
| pending_eval_table = gr.Dataframe( | |
| value=pending_eval_queue_df, | |
| headers=EVAL_COLS, | |
| datatype=EVAL_TYPES, | |
| row_count=5, | |
| ) | |
| with gr.Accordion( | |
| f"❎ Failed Evaluation Queue ({len(failed_eval_queue_df)})", | |
| open=False, | |
| ): | |
| with gr.Row(): | |
| failed_eval_table = gr.Dataframe( | |
| value=failed_eval_queue_df, | |
| headers=EVAL_COLS, | |
| datatype=EVAL_TYPES, | |
| row_count=5, | |
| ) | |
| with gr.Row(): | |
| gr.Markdown("# ✉️✨ Submit your model here!", elem_classes="markdown-text") | |
| with gr.Row(): | |
| with gr.Column(): | |
| model_name_textbox = gr.Textbox(label="Model name") | |
| revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main") | |
| model_type = gr.Dropdown( | |
| choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown], | |
| label="Model type", | |
| multiselect=False, | |
| value=None, | |
| interactive=True, | |
| ) | |
| with gr.Column(): | |
| precision = gr.Dropdown( | |
| choices=[i.value.name for i in Precision if i != Precision.Unknown], | |
| label="Precision", | |
| multiselect=False, | |
| value="float16", | |
| interactive=True, | |
| ) | |
| weight_type = gr.Dropdown( | |
| choices=[i.value.name for i in WeightType], | |
| label="Weights type", | |
| multiselect=False, | |
| value="Original", | |
| interactive=True, | |
| ) | |
| base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)") | |
| add_special_tokens = gr.Dropdown( | |
| choices=[i.value.name for i in AddSpecialTokens if i != AddSpecialTokens.Unknown], | |
| label="AddSpecialTokens", | |
| multiselect=False, | |
| value="False", | |
| interactive=True, | |
| ) | |
| submit_button = gr.Button("Submit Eval") | |
| submission_result = gr.Markdown() | |
| submit_button.click( | |
| add_new_eval, | |
| [ | |
| model_name_textbox, | |
| base_model_name_textbox, | |
| revision_name_textbox, | |
| precision, | |
| weight_type, | |
| model_type, | |
| add_special_tokens, | |
| ], | |
| submission_result, | |
| ) | |
| # Main demo | |
| with gr.Blocks(css=custom_css) as demo: | |
| gr.HTML(TITLE) | |
| gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") | |
| with gr.Tabs(elem_classes="tab-buttons") as tabs: | |
| with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0): | |
| demo_leaderboard.render() | |
| with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2): | |
| gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text") | |
| with gr.TabItem("🚀 Submit here! ", elem_id="llm-benchmark-tab-table", id=3): | |
| demo_submission.render() | |
| with gr.Row(): | |
| with gr.Accordion("📙 Citation", open=False): | |
| citation_button = gr.Textbox( | |
| value=CITATION_BUTTON_TEXT, | |
| label=CITATION_BUTTON_LABEL, | |
| lines=20, | |
| elem_id="citation-button", | |
| show_copy_button=True, | |
| ) | |
| gr.HTML(BOTTOM_LOGO) | |
| if __name__ == "__main__": | |
| if os.getenv("SPACE_ID"): | |
| scheduler = BackgroundScheduler() | |
| scheduler.add_job(restart_space, "interval", seconds=1800) | |
| scheduler.start() | |
| demo.queue(default_concurrency_limit=40).launch() | |