Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
| import json | |
| import os | |
| import pathlib | |
| import huggingface_hub | |
| import requests | |
| from huggingface_hub import ModelCard | |
| from huggingface_hub.hf_api import ModelInfo | |
| from transformers import AutoConfig | |
| from transformers.models.auto.tokenization_auto import AutoTokenizer | |
| from src.display.utils import EvalQueuedModel | |
| def check_model_card(repo_id: str) -> tuple[bool, str]: | |
| """Checks if the model card and license exist and have been filled""" | |
| try: | |
| card = ModelCard.load(repo_id) | |
| except huggingface_hub.utils.EntryNotFoundError: | |
| return False, "Please add a model card to your model to explain how you trained/fine-tuned it." | |
| # Enforce license metadata | |
| if card.data.license is None: | |
| if not ("license_name" in card.data and "license_link" in card.data): | |
| return False, ( | |
| "License not found. Please add a license to your model card using the `license` metadata or a" | |
| " `license_name`/`license_link` pair." | |
| ) | |
| # Enforce card content | |
| if len(card.text) < 200: | |
| return False, "Please add a description to your model card, it is too short." | |
| return True, "" | |
| def is_model_on_hub( | |
| model_name: str, revision: str, token: str = None, trust_remote_code=False, test_tokenizer=False | |
| ) -> tuple[bool, str]: | |
| """Checks if the model model_name is on the hub, and whether it (and its tokenizer) can be loaded with AutoClasses.""" | |
| try: | |
| config = AutoConfig.from_pretrained( | |
| model_name, revision=revision, trust_remote_code=trust_remote_code, token=token | |
| ) | |
| if test_tokenizer: | |
| try: | |
| AutoTokenizer.from_pretrained( | |
| model_name, revision=revision, trust_remote_code=trust_remote_code, token=token | |
| ) | |
| except ValueError as e: | |
| return (False, f"uses a tokenizer which is not in a transformers release: {e}", None) | |
| except Exception: | |
| return ( | |
| False, | |
| "'s tokenizer cannot be loaded. Is your tokenizer class in a stable transformers release, and correctly configured?", | |
| None, | |
| ) | |
| return True, None, config | |
| except ValueError: | |
| return ( | |
| False, | |
| "needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard.", | |
| None, | |
| ) | |
| except OSError as e: | |
| if "gated repo" in str(e): | |
| slack_webhook_url = os.environ["SLACK_WEBHOOK_URL"] | |
| text = f"<!channel>\n{model_name} is gated model! Please submit this model." | |
| requests.post(slack_webhook_url, data=json.dumps({"text": text})) | |
| return False, "is gated model! Please wait.", None | |
| return False, "was not found on hub!", None | |
| except Exception: | |
| return False, "was not found on hub!", None | |
| def get_model_size(model_info: ModelInfo, precision: str): | |
| """Gets the model size from the configuration, or the model name if the configuration does not contain the information.""" | |
| try: | |
| model_size = round(model_info.safetensors["total"] / 1e9, 3) | |
| except (AttributeError, TypeError): | |
| return 0 # Unknown model sizes are indicated as 0, see NUMERIC_INTERVALS in app.py | |
| size_factor = 8 if (precision == "GPTQ" or "gptq" in model_info.modelId.lower()) else 1 | |
| model_size = size_factor * model_size | |
| return model_size | |
| def get_model_arch(model_info: ModelInfo): | |
| """Gets the model architecture from the configuration""" | |
| return model_info.config.get("architectures", "Unknown") | |
| def already_submitted_models(requested_models_dir: pathlib.Path) -> set[EvalQueuedModel]: | |
| """Gather a list of already submitted models to avoid duplicates""" | |
| queued_models = set() | |
| for json_path in requested_models_dir.glob("*/*.json"): | |
| with json_path.open() as f: | |
| info = json.load(f) | |
| # Allow failed submissions to be re-submitted | |
| if info["status"] == "FAILED": | |
| continue | |
| queued_models.add( | |
| EvalQueuedModel( | |
| model=info["model"], | |
| revision=info["revision"], | |
| precision=info["precision"], | |
| add_special_tokens=info["add_special_tokens"], | |
| llm_jp_eval_version=info["llm_jp_eval_version"], | |
| vllm_version=info["vllm_version"], | |
| ) | |
| ) | |
| return queued_models | |