Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
| import os | |
| import json | |
| import gradio as gr | |
| import pandas as pd | |
| from apscheduler.schedulers.background import BackgroundScheduler | |
| from huggingface_hub import snapshot_download | |
| from src.about import ( | |
| CITATION_BUTTON_LABEL, | |
| CITATION_BUTTON_TEXT, | |
| EVALUATION_QUEUE_TEXT, | |
| INTRODUCTION_TEXT, | |
| LLM_BENCHMARKS_TEXT, | |
| TITLE, | |
| ) | |
| from src.display.css_html_js import custom_css | |
| from src.display.utils import ( | |
| BENCHMARK_COLS, | |
| COLS, | |
| EVAL_COLS, | |
| EVAL_TYPES, | |
| AutoEvalColumn, | |
| ModelType, | |
| fields, | |
| WeightType, | |
| Precision, | |
| AddSpecialTokens, | |
| NumFewShots, | |
| NUMERIC_INTERVALS, | |
| TYPES, | |
| ) | |
| from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN | |
| from src.populate import get_evaluation_queue_df, get_leaderboard_df | |
| from src.submission.submit import add_new_eval | |
| def restart_space(): | |
| API.restart_space(repo_id=REPO_ID) | |
| ### Space initialisation | |
| try: | |
| print(EVAL_REQUESTS_PATH) | |
| snapshot_download( | |
| repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN | |
| ) | |
| except Exception: | |
| restart_space() | |
| try: | |
| print(EVAL_RESULTS_PATH) | |
| snapshot_download( | |
| repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN | |
| ) | |
| except Exception: | |
| restart_space() | |
| LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS) | |
| original_df = LEADERBOARD_DF | |
| leaderboard_df = original_df.copy() | |
| ( | |
| finished_eval_queue_df, | |
| running_eval_queue_df, | |
| pending_eval_queue_df, | |
| failed_eval_queue_df, | |
| ) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS) | |
| # Searching and filtering | |
| # def update_table( | |
| # hidden_df: pd.DataFrame, | |
| # columns: list, | |
| # type_query: list, | |
| # precision_query: str, | |
| # size_query: list, | |
| # add_special_tokens_query: list, | |
| # num_few_shots_query: list, | |
| # show_deleted: bool, | |
| # show_merges: bool, | |
| # show_flagged: bool, | |
| # query: str, | |
| # ): | |
| # print(f"Update table called with: type_query={type_query}, precision_query={precision_query}, size_query={size_query}") | |
| # print(f"hidden_df shape before filtering: {hidden_df.shape}") | |
| # filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, add_special_tokens_query, num_few_shots_query, show_deleted, show_merges, show_flagged) | |
| # print(f"filtered_df shape after filter_models: {filtered_df.shape}") | |
| # filtered_df = filter_queries(query, filtered_df) | |
| # print(f"filtered_df shape after filter_queries: {filtered_df.shape}") | |
| # print(f"Filter applied: query={query}, columns={columns}, type_query={type_query}, precision_query={precision_query}") | |
| # print("Filtered dataframe head:") | |
| # print(filtered_df.head()) | |
| # df = select_columns(filtered_df, columns) | |
| # print(f"Final df shape: {df.shape}") | |
| # print("Final dataframe head:") | |
| # print(df.head()) | |
| # return df | |
| def update_table( | |
| hidden_df: pd.DataFrame, | |
| columns: list, | |
| type_query: list, | |
| precision_query: list, | |
| size_query: list, | |
| add_special_tokens_query: list, | |
| num_few_shots_query: list, | |
| show_deleted: bool, | |
| show_merges: bool, | |
| show_flagged: bool, | |
| query: str, | |
| architecture_query: list, | |
| license_query: list | |
| ): | |
| filtered_df = filter_models( | |
| hidden_df, type_query, size_query, precision_query, | |
| add_special_tokens_query, num_few_shots_query, | |
| show_deleted, show_merges, show_flagged, | |
| architecture_query, license_query | |
| ) | |
| filtered_df = filter_queries(query, filtered_df) | |
| df = select_columns(filtered_df, columns) | |
| return df | |
| def load_query(request: gr.Request): # triggered only once at startup => read query parameter if it exists | |
| query = request.query_params.get("query") or "" | |
| return query, query # return one for the "search_bar", one for a hidden component that triggers a reload only if value has changed | |
| def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame: | |
| return df[(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))] | |
| def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame: | |
| always_here_cols = [ | |
| AutoEvalColumn.model_type_symbol.name, | |
| AutoEvalColumn.model.name, | |
| ] | |
| # We use COLS to maintain sorting | |
| filtered_df = df[ | |
| always_here_cols + [c for c in COLS if c in df.columns and c in columns]# + [AutoEvalColumn.dummy.name] | |
| ] | |
| return filtered_df | |
| def filter_queries(query: str, filtered_df: pd.DataFrame): | |
| """Added by Abishek""" | |
| final_df = [] | |
| if query != "": | |
| queries = [q.strip() for q in query.split(";")] | |
| for _q in queries: | |
| _q = _q.strip() | |
| if _q != "": | |
| temp_filtered_df = search_table(filtered_df, _q) | |
| if len(temp_filtered_df) > 0: | |
| final_df.append(temp_filtered_df) | |
| if len(final_df) > 0: | |
| filtered_df = pd.concat(final_df) | |
| filtered_df = filtered_df.drop_duplicates( | |
| subset=[AutoEvalColumn.model.name, AutoEvalColumn.precision.name, AutoEvalColumn.revision.name] | |
| ) | |
| return filtered_df | |
| # def filter_models( | |
| # df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, add_special_tokens_query: list, num_few_shots_query: list, show_deleted: bool, show_merges: bool, show_flagged: bool | |
| # ) -> pd.DataFrame: | |
| # print(f"Initial df shape: {df.shape}") | |
| # print(f"Initial df content:\n{df}") | |
| # filtered_df = df | |
| # # Model Type γγ£γ«γΏγͺγ³γ° | |
| # type_emoji = [t.split()[0] for t in type_query] | |
| # filtered_df = filtered_df[filtered_df['T'].isin(type_emoji)] | |
| # print(f"After type filter: {filtered_df.shape}") | |
| # # Precision γγ£γ«γΏγͺγ³γ° | |
| # filtered_df = filtered_df[filtered_df['Precision'].isin(precision_query + ['Unknown', '?'])] | |
| # print(f"After precision filter: {filtered_df.shape}") | |
| # # Model Size γγ£γ«γΏγͺγ³γ° | |
| # if 'Unknown' in size_query: | |
| # size_mask = filtered_df['#Params (B)'].isna() | (filtered_df['#Params (B)'] == 0) | |
| # else: | |
| # size_mask = filtered_df['#Params (B)'].apply(lambda x: any(x in NUMERIC_INTERVALS[s] for s in size_query if s != 'Unknown')) | |
| # filtered_df = filtered_df[size_mask] | |
| # print(f"After size filter: {filtered_df.shape}") | |
| # # Add Special Tokens γγ£γ«γΏγͺγ³γ° | |
| # filtered_df = filtered_df[filtered_df['Add Special Tokens'].isin(add_special_tokens_query + ['Unknown', '?'])] | |
| # print(f"After add_special_tokens filter: {filtered_df.shape}") | |
| # # Num Few Shots γγ£γ«γΏγͺγ³γ° | |
| # filtered_df = filtered_df[filtered_df['Few-shot'].astype(str).isin([str(x) for x in num_few_shots_query] + ['Unknown', '?'])] | |
| # print(f"After num_few_shots filter: {filtered_df.shape}") | |
| # # Show deleted models γγ£γ«γΏγͺγ³γ° | |
| # if not show_deleted: | |
| # filtered_df = filtered_df[filtered_df['Available on the hub'] == True] | |
| # print(f"After show_deleted filter: {filtered_df.shape}") | |
| # print("Filtered dataframe head:") | |
| # print(filtered_df.head()) | |
| # return filtered_df | |
| def filter_models( | |
| df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, | |
| add_special_tokens_query: list, num_few_shots_query: list, | |
| show_deleted: bool, show_merges: bool, show_flagged: bool, | |
| architecture_query: list, license_query: list | |
| ) -> pd.DataFrame: | |
| print(f"Initial df shape: {df.shape}") | |
| # Model Type γγ£γ«γΏγͺγ³γ° | |
| type_emoji = [t.split()[0] for t in type_query] | |
| filtered_df = df[df['T'].isin(type_emoji)] | |
| print(f"After type filter: {filtered_df.shape}") | |
| # Precision γγ£γ«γΏγͺγ³γ° | |
| filtered_df = filtered_df[filtered_df['Precision'].isin(precision_query + ['Unknown', '?'])] | |
| print(f"After precision filter: {filtered_df.shape}") | |
| # Model Size γγ£γ«γΏγͺγ³γ° | |
| if 'Unknown' in size_query: | |
| size_mask = filtered_df['#Params (B)'].isna() | (filtered_df['#Params (B)'] == 0) | |
| else: | |
| size_mask = filtered_df['#Params (B)'].apply(lambda x: any(pd.Interval(NUMERIC_INTERVALS[s].left, NUMERIC_INTERVALS[s].right).contains(x) for s in size_query if s != 'Unknown')) | |
| filtered_df = filtered_df[size_mask] | |
| print(f"After size filter: {filtered_df.shape}") | |
| # Add Special Tokens γγ£γ«γΏγͺγ³γ° | |
| filtered_df = filtered_df[filtered_df['Add Special Tokens'].isin(add_special_tokens_query + ['Unknown', '?'])] | |
| print(f"After add_special_tokens filter: {filtered_df.shape}") | |
| # Num Few Shots γγ£γ«γΏγͺγ³γ° | |
| filtered_df = filtered_df[filtered_df['Few-shot'].astype(str).isin([str(x) for x in num_few_shots_query] + ['Unknown', '?'])] | |
| print(f"After num_few_shots filter: {filtered_df.shape}") | |
| # Architecture γγ£γ«γΏγͺγ³γ° | |
| if architecture_query: | |
| filtered_df = filtered_df[filtered_df['Architecture'].isin(architecture_query)] | |
| print(f"After architecture filter: {filtered_df.shape}") | |
| # License γγ£γ«γΏγͺγ³γ° | |
| if license_query: | |
| filtered_df = filtered_df[filtered_df['Hub License'].isin(license_query)] | |
| print(f"After license filter: {filtered_df.shape}") | |
| # Show deleted models γγ£γ«γΏγͺγ³γ° | |
| if not show_deleted: | |
| filtered_df = filtered_df[filtered_df['Available on the hub'] == True] | |
| print(f"After show_deleted filter: {filtered_df.shape}") | |
| print("Filtered dataframe head:") | |
| print(filtered_df.head()) | |
| return filtered_df | |
| leaderboard_df = filter_models(leaderboard_df, [t.to_str(" : ") for t in ModelType], list(NUMERIC_INTERVALS.keys()), [i.value.name for i in Precision], [i.value.name for i in AddSpecialTokens], [i.value.name for i in NumFewShots], False, False, False) | |
| demo = gr.Blocks(css=custom_css) | |
| with demo: | |
| gr.HTML(TITLE) | |
| gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") | |
| with gr.Tabs(elem_classes="tab-buttons") as tabs: | |
| with gr.TabItem("π LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0): | |
| with gr.Row(): | |
| with gr.Column(): | |
| with gr.Row(): | |
| search_bar = gr.Textbox( | |
| placeholder=" π Search for your model (separate multiple queries with `;`) and press ENTER...", | |
| show_label=False, | |
| elem_id="search-bar", | |
| ) | |
| with gr.Row(): | |
| shown_columns = gr.CheckboxGroup( | |
| choices=[ | |
| c.name | |
| for c in fields(AutoEvalColumn) | |
| if not c.hidden and not c.never_hidden# and not c.dummy | |
| ], | |
| value=[ | |
| c.name | |
| for c in fields(AutoEvalColumn) | |
| if c.displayed_by_default and not c.hidden and not c.never_hidden | |
| ], | |
| label="Select columns to show", | |
| elem_id="column-select", | |
| interactive=True, | |
| ) | |
| with gr.Row(): | |
| deleted_models_visibility = gr.Checkbox( | |
| value=False, label="Show private/deleted models", interactive=True | |
| ) | |
| merged_models_visibility = gr.Checkbox( | |
| value=False, label="Show merges", interactive=True | |
| ) | |
| flagged_models_visibility = gr.Checkbox( | |
| value=False, label="Show flagged models", interactive=True | |
| ) | |
| with gr.Column(min_width=320): | |
| #with gr.Box(elem_id="box-filter"): | |
| filter_columns_type = gr.CheckboxGroup( | |
| label="Model types", | |
| choices=[t.to_str() for t in ModelType], | |
| value=[t.to_str() for t in ModelType], | |
| interactive=True, | |
| elem_id="filter-columns-type", | |
| ) | |
| filter_columns_precision = gr.CheckboxGroup( | |
| label="Precision", | |
| choices=[i.value.name for i in Precision], | |
| value=[i.value.name for i in Precision], | |
| interactive=True, | |
| elem_id="filter-columns-precision", | |
| ) | |
| filter_columns_size = gr.CheckboxGroup( | |
| label="Model sizes (in billions of parameters)", | |
| choices=list(NUMERIC_INTERVALS.keys()), | |
| value=list(NUMERIC_INTERVALS.keys()), | |
| interactive=True, | |
| elem_id="filter-columns-size", | |
| ) | |
| filter_columns_add_special_tokens = gr.CheckboxGroup( | |
| label="Add Special Tokens", | |
| choices=[i.value.name for i in AddSpecialTokens], | |
| value=[i.value.name for i in AddSpecialTokens], | |
| interactive=True, | |
| elem_id="filter-columns-add-special-tokens", | |
| ) | |
| filter_columns_num_few_shots = gr.CheckboxGroup( | |
| label="Num Few Shots", | |
| choices=[i.value.name for i in NumFewShots], | |
| value=[i.value.name for i in NumFewShots], | |
| interactive=True, | |
| elem_id="filter-columns-num-few-shots", | |
| ) | |
| leaderboard_df_filtered = filter_models(leaderboard_df, [t.to_str(" : ") for t in ModelType], list(NUMERIC_INTERVALS.keys()), [i.value.name for i in Precision], [i.value.name for i in AddSpecialTokens], [i.value.name for i in NumFewShots], False, False, False) | |
| leaderboard_table = gr.components.Dataframe( | |
| value=leaderboard_df_filtered, | |
| headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value, | |
| datatype=TYPES, | |
| elem_id="leaderboard-table", | |
| interactive=False, | |
| visible=True, | |
| ) | |
| print("Leaderboard table initial value:") | |
| print(leaderboard_table.value) | |
| print(f"Leaderboard table shape: {leaderboard_table.value.shape if isinstance(leaderboard_table.value, pd.DataFrame) else 'Not a DataFrame'}") | |
| # Dummy leaderboard for handling the case when the user uses backspace key | |
| hidden_leaderboard_table_for_search = gr.components.Dataframe( | |
| value=original_df[COLS], | |
| headers=COLS, | |
| datatype=TYPES, | |
| visible=False, | |
| ) | |
| search_bar.submit( | |
| update_table, | |
| [ | |
| hidden_leaderboard_table_for_search, | |
| shown_columns, | |
| filter_columns_type, | |
| filter_columns_precision, | |
| filter_columns_size, | |
| filter_columns_add_special_tokens, | |
| filter_columns_num_few_shots, | |
| deleted_models_visibility, | |
| merged_models_visibility, | |
| flagged_models_visibility, | |
| search_bar, | |
| ], | |
| leaderboard_table, | |
| ) | |
| # Define a hidden component that will trigger a reload only if a query parameter has be set | |
| hidden_search_bar = gr.Textbox(value="", visible=False) | |
| hidden_search_bar.change( | |
| update_table, | |
| [ | |
| hidden_leaderboard_table_for_search, | |
| shown_columns, | |
| filter_columns_type, | |
| filter_columns_precision, | |
| filter_columns_size, | |
| filter_columns_add_special_tokens, | |
| filter_columns_num_few_shots, | |
| deleted_models_visibility, | |
| merged_models_visibility, | |
| flagged_models_visibility, | |
| search_bar, | |
| ], | |
| leaderboard_table, | |
| ) | |
| # Check query parameter once at startup and update search bar + hidden component | |
| demo.load(load_query, inputs=[], outputs=[search_bar, hidden_search_bar]) | |
| for selector in [shown_columns, filter_columns_type, filter_columns_precision, filter_columns_size, filter_columns_add_special_tokens, filter_columns_num_few_shots, deleted_models_visibility, merged_models_visibility, flagged_models_visibility]: | |
| selector.change( | |
| update_table, | |
| [ | |
| hidden_leaderboard_table_for_search, | |
| shown_columns, | |
| filter_columns_type, | |
| filter_columns_precision, | |
| filter_columns_size, | |
| filter_columns_add_special_tokens, | |
| filter_columns_num_few_shots, | |
| deleted_models_visibility, | |
| merged_models_visibility, | |
| flagged_models_visibility, | |
| search_bar, | |
| ], | |
| leaderboard_table, | |
| queue=True, | |
| ) | |
| with gr.TabItem("π About", elem_id="llm-benchmark-tab-table", id=2): | |
| gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text") | |
| with gr.TabItem("π Submit here! ", elem_id="llm-benchmark-tab-table", id=3): | |
| with gr.Column(): | |
| with gr.Row(): | |
| gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text") | |
| with gr.Column(): | |
| with gr.Accordion( | |
| f"β Finished Evaluations ({len(finished_eval_queue_df)})", | |
| open=False, | |
| ): | |
| with gr.Row(): | |
| finished_eval_table = gr.components.Dataframe( | |
| value=finished_eval_queue_df, | |
| headers=EVAL_COLS, | |
| datatype=EVAL_TYPES, | |
| row_count=5, | |
| ) | |
| with gr.Accordion( | |
| f"π Running Evaluation Queue ({len(running_eval_queue_df)})", | |
| open=False, | |
| ): | |
| with gr.Row(): | |
| running_eval_table = gr.components.Dataframe( | |
| value=running_eval_queue_df, | |
| headers=EVAL_COLS, | |
| datatype=EVAL_TYPES, | |
| row_count=5, | |
| ) | |
| with gr.Accordion( | |
| f"β³ Pending Evaluation Queue ({len(pending_eval_queue_df)})", | |
| open=False, | |
| ): | |
| with gr.Row(): | |
| pending_eval_table = gr.components.Dataframe( | |
| value=pending_eval_queue_df, | |
| headers=EVAL_COLS, | |
| datatype=EVAL_TYPES, | |
| row_count=5, | |
| ) | |
| with gr.Accordion( | |
| f"β Failed Evaluation Queue ({len(failed_eval_queue_df)})", | |
| open=False, | |
| ): | |
| with gr.Row(): | |
| failed_eval_table = gr.components.Dataframe( | |
| value=failed_eval_queue_df, | |
| headers=EVAL_COLS, | |
| datatype=EVAL_TYPES, | |
| row_count=5, | |
| ) | |
| with gr.Row(): | |
| gr.Markdown("# βοΈβ¨ Submit your model here!", elem_classes="markdown-text") | |
| with gr.Row(): | |
| with gr.Column(): | |
| model_name_textbox = gr.Textbox(label="Model name") | |
| revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main") | |
| model_type = gr.Dropdown( | |
| choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown], | |
| label="Model type", | |
| multiselect=False, | |
| value=None, | |
| interactive=True, | |
| ) | |
| with gr.Column(): | |
| precision = gr.Dropdown( | |
| choices=[i.value.name for i in Precision if i != Precision.Unknown], | |
| label="Precision", | |
| multiselect=False, | |
| value="float16", | |
| interactive=True, | |
| ) | |
| weight_type = gr.Dropdown( | |
| choices=[i.value.name for i in WeightType], | |
| label="Weights type", | |
| multiselect=False, | |
| value="Original", | |
| interactive=True, | |
| ) | |
| base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)") | |
| add_special_tokens = gr.Dropdown( | |
| choices=[i.value.name for i in AddSpecialTokens if i != AddSpecialTokens.Unknown], | |
| label="AddSpecialTokens", | |
| multiselect=False, | |
| value="False", | |
| interactive=True, | |
| ) | |
| submit_button = gr.Button("Submit Eval") | |
| submission_result = gr.Markdown() | |
| submit_button.click( | |
| add_new_eval, | |
| [ | |
| model_name_textbox, | |
| base_model_name_textbox, | |
| revision_name_textbox, | |
| precision, | |
| weight_type, | |
| model_type, | |
| add_special_tokens, | |
| ], | |
| submission_result, | |
| ) | |
| with gr.Row(): | |
| with gr.Accordion("π Citation", open=False): | |
| citation_button = gr.Textbox( | |
| value=CITATION_BUTTON_TEXT, | |
| label=CITATION_BUTTON_LABEL, | |
| lines=20, | |
| elem_id="citation-button", | |
| show_copy_button=True, | |
| ) | |
| scheduler = BackgroundScheduler() | |
| scheduler.add_job(restart_space, "interval", seconds=1800) | |
| scheduler.start() | |
| demo.queue(default_concurrency_limit=40).launch() |