llava-4bit / app.py
LPDoctor's picture
Update app.py
4e00f33 verified
raw
history blame
6.76 kB
import os
import string
import copy
import gradio as gr
import PIL.Image
import torch
from transformers import BitsAndBytesConfig, pipeline
import re
import time
DESCRIPTION = "# LLaVA 🌋"
model_id = "llava-hf/llava-1.5-7b-hf"
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16
)
pipe = pipeline("image-to-text", model=model_id, model_kwargs={"quantization_config": quantization_config})
def extract_response_pairs(text):
turns = re.split(r'(USER:|ASSISTANT:)', text)[1:]
turns = [turn.strip() for turn in turns if turn.strip()]
conv_list = []
for i in range(0, len(turns[1::2]), 2):
if i + 1 < len(turns[1::2]):
conv_list.append([turns[1::2][i].lstrip(":"), turns[1::2][i + 1].lstrip(":")])
return conv_list
def add_text(history, text):
history = history.append([text, None])
return history, text
def infer(image, prompt,
temperature,
length_penalty,
repetition_penalty,
max_length,
min_length,
top_p):
print("类型是:",type(image))
outputs = pipe(images=image, prompt=prompt,
generate_kwargs={"temperature":temperature,
"length_penalty":length_penalty,
"repetition_penalty":repetition_penalty,
"max_length":max_length,
"min_length":min_length,
"top_p":top_p})
inference_output = outputs[0]["generated_text"]
return inference_output
def bot(history_chat, text_input, image,
temperature,
length_penalty,
repetition_penalty,
max_length,
min_length,
top_p):
if text_input == "":
gr.Warning("Please input text")
if image==None:
gr.Warning("Please input image or wait for image to be uploaded before clicking submit.")
chat_history = " ".join(history_chat) # history as a str to be passed to model
chat_history = chat_history + f"USER: <image>\n{text_input}\nASSISTANT:" # add text input for prompting
inference_result = infer(image, chat_history,
temperature,
length_penalty,
repetition_penalty,
max_length,
min_length,
top_p)
# return inference and parse for new history
chat_val = extract_response_pairs(inference_result)
# create history list for yielding the last inference response
chat_state_list = copy.deepcopy(chat_val)
chat_state_list[-1][1] = "" # empty last response
# add characters iteratively
for character in chat_val[-1][1]:
chat_state_list[-1][1] += character
time.sleep(0.05)
# yield history but with last response being streamed
yield chat_state_list
css = """
#mkd {
height: 500px;
overflow: auto;
border: 1px solid #ccc;
}
"""
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
gr.Markdown("""## LLaVA, one of the greatest multimodal chat models is now available in Transformers with 4-bit quantization! ⚡️
See the docs here: https://huggingface.co/docs/transformers/main/en/model_doc/llava.""")
chatbot = gr.Chatbot(label="Chat", show_label=False)
gr.Markdown("Input image and text and start chatting 👇")
with gr.Row():
image = gr.Image(type="pil")
text_input = gr.Text(label="Chat Input", show_label=False, max_lines=3, container=False)
history_chat = gr.State(value=[])
with gr.Accordion(label="Advanced settings", open=False):
temperature = gr.Slider(
label="Temperature",
info="Used with nucleus sampling.",
minimum=0.5,
maximum=1.0,
step=0.1,
value=1.0,
)
length_penalty = gr.Slider(
label="Length Penalty",
info="Set to larger for longer sequence, used with beam search.",
minimum=-1.0,
maximum=2.0,
step=0.2,
value=1.0,
)
repetition_penalty = gr.Slider(
label="Repetition Penalty",
info="Larger value prevents repetition.",
minimum=1.0,
maximum=5.0,
step=0.5,
value=1.5,
)
max_length = gr.Slider(
label="Max Length",
minimum=1,
maximum=500,
step=1,
value=200,
)
min_length = gr.Slider(
label="Minimum Length",
minimum=1,
maximum=100,
step=1,
value=1,
)
top_p = gr.Slider(
label="Top P",
info="Used with nucleus sampling.",
minimum=0.5,
maximum=1.0,
step=0.1,
value=0.9,
)
chat_output = [
chatbot,
history_chat
]
chat_inputs = [
image,
text_input,
temperature,
length_penalty,
repetition_penalty,
max_length,
min_length,
top_p,
history_chat
]
with gr.Row():
clear_chat_button = gr.Button("Clear")
cancel_btn = gr.Button("Stop Generation")
chat_button = gr.Button("Submit", variant="primary")
chat_event1 = chat_button.click(add_text, [chatbot, text_input], [chatbot, text_input]).then(bot, [chatbot, text_input,
image, temperature,
length_penalty,
repetition_penalty,
max_length,
min_length,
top_p], chatbot)
chat_event2 = text_input.submit(
add_text,
[chatbot, text_input],
[chatbot, text_input]
).then(
fn=bot,
inputs=[chatbot, text_input, image, temperature,
length_penalty,
repetition_penalty,
max_length,
min_length,
top_p],
outputs=chatbot
)
clear_chat_button.click(
fn=lambda: ([], []),
inputs=None,
outputs=[
chatbot,
history_chat
],
queue=False,
api_name="clear",
)
image.change(
fn=lambda: ([], []),
inputs=None,
outputs=[
chatbot,
history_chat
],
queue=False)
cancel_btn.click(
None, [], [],
cancels=[chat_event1, chat_event2]
)
examples = [["./examples/baklava.png", "How to make this pastry?"],["./examples/bee.png","Describe this image."]]
gr.Examples(examples=examples, inputs=[image, text_input, chat_inputs])
if __name__ == "__main__":
demo.queue(max_size=10).launch(debug=True)