Spaces:
Running
on
T4
Running
on
T4
File size: 6,723 Bytes
8400add 95dbe7e 8400add ee95e21 8400add 95dbe7e 8400add e5327ee 11e466e 8400add 458ccb5 95dbe7e 458ccb5 8400add 95dbe7e 8400add 95dbe7e 8400add 95dbe7e 08bcb47 95dbe7e 11e466e 86f426b 8400add 95dbe7e c2a93d4 95dbe7e c2a93d4 8400add 95dbe7e 8400add a3a174a 8400add 08bcb47 8400add 95dbe7e 8400add 08bcb47 95dbe7e 8400add 95dbe7e 8400add 08bcb47 8400add 35dad4a 8400add 35dad4a 08bcb47 8400add 95dbe7e 8400add 08bcb47 8400add 08bcb47 8400add 95dbe7e 66716db 95dbe7e 66716db 95dbe7e 66716db 95dbe7e 8400add 11e466e 66716db 3586d9f 11e466e 8400add 66716db |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
import os
import string
import copy
import gradio as gr
import PIL.Image
import torch
from transformers import BitsAndBytesConfig, pipeline
import re
import time
DESCRIPTION = "# LLaVA 🌋"
model_id = "llava-hf/llava-1.5-7b-hf"
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16
)
pipe = pipeline("image-to-text", model=model_id, model_kwargs={"quantization_config": quantization_config})
def extract_response_pairs(text):
turns = re.split(r'(USER:|ASSISTANT:)', text)[1:]
turns = [turn.strip() for turn in turns if turn.strip()]
conv_list = []
for i in range(0, len(turns[1::2]), 2):
if i + 1 < len(turns[1::2]):
conv_list.append([turns[1::2][i].lstrip(":"), turns[1::2][i + 1].lstrip(":")])
return conv_list
def add_text(history, text):
history = history.append([text, None])
return history, text
def infer(image, prompt,
temperature,
length_penalty,
repetition_penalty,
max_length,
min_length,
top_p):
outputs = pipe(images=image, prompt=prompt,
generate_kwargs={"temperature":temperature,
"length_penalty":length_penalty,
"repetition_penalty":repetition_penalty,
"max_length":max_length,
"min_length":min_length,
"top_p":top_p})
inference_output = outputs[0]["generated_text"]
return inference_output
def bot(history_chat, text_input, image,
temperature,
length_penalty,
repetition_penalty,
max_length,
min_length,
top_p):
if text_input == "":
gr.Warning("Please input text")
if image==None:
gr.Warning("Please input image or wait for image to be uploaded before clicking submit.")
chat_history = " ".join(history_chat) # history as a str to be passed to model
chat_history = chat_history + f"USER: <image>\n{text_input}\nASSISTANT:" # add text input for prompting
inference_result = infer(image, chat_history,
temperature,
length_penalty,
repetition_penalty,
max_length,
min_length,
top_p)
# return inference and parse for new history
chat_val = extract_response_pairs(inference_result)
# create history list for yielding the last inference response
chat_state_list = copy.deepcopy(chat_val)
chat_state_list[-1][1] = "" # empty last response
# add characters iteratively
for character in chat_val[-1][1]:
chat_state_list[-1][1] += character
time.sleep(0.05)
# yield history but with last response being streamed
yield chat_state_list
css = """
#mkd {
height: 500px;
overflow: auto;
border: 1px solid #ccc;
}
"""
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
gr.Markdown("""## LLaVA, one of the greatest multimodal chat models is now available in Transformers with 4-bit quantization! ⚡️
See the docs here: https://huggingface.co/docs/transformers/main/en/model_doc/llava.""")
chatbot = gr.Chatbot(label="Chat", show_label=False)
gr.Markdown("Input image and text and start chatting 👇")
with gr.Row():
image = gr.Image(type="pil")
text_input = gr.Text(label="Chat Input", show_label=False, max_lines=3, container=False)
history_chat = gr.State(value=[])
with gr.Accordion(label="Advanced settings", open=False):
temperature = gr.Slider(
label="Temperature",
info="Used with nucleus sampling.",
minimum=0.5,
maximum=1.0,
step=0.1,
value=1.0,
)
length_penalty = gr.Slider(
label="Length Penalty",
info="Set to larger for longer sequence, used with beam search.",
minimum=-1.0,
maximum=2.0,
step=0.2,
value=1.0,
)
repetition_penalty = gr.Slider(
label="Repetition Penalty",
info="Larger value prevents repetition.",
minimum=1.0,
maximum=5.0,
step=0.5,
value=1.5,
)
max_length = gr.Slider(
label="Max Length",
minimum=1,
maximum=500,
step=1,
value=200,
)
min_length = gr.Slider(
label="Minimum Length",
minimum=1,
maximum=100,
step=1,
value=1,
)
top_p = gr.Slider(
label="Top P",
info="Used with nucleus sampling.",
minimum=0.5,
maximum=1.0,
step=0.1,
value=0.9,
)
chat_output = [
chatbot,
history_chat
]
chat_inputs = [
image,
text_input,
temperature,
length_penalty,
repetition_penalty,
max_length,
min_length,
top_p,
history_chat
]
with gr.Row():
clear_chat_button = gr.Button("Clear")
cancel_btn = gr.Button("Stop Generation")
chat_button = gr.Button("Submit", variant="primary")
chat_event1 = chat_button.click(add_text, [chatbot, text_input], [chatbot, text_input]).then(bot, [chatbot, text_input,
image, temperature,
length_penalty,
repetition_penalty,
max_length,
min_length,
top_p], chatbot)
chat_event2 = text_input.submit(
add_text,
[chatbot, text_input],
[chatbot, text_input]
).then(
fn=bot,
inputs=[chatbot, text_input, image, temperature,
length_penalty,
repetition_penalty,
max_length,
min_length,
top_p],
outputs=chatbot
)
clear_chat_button.click(
fn=lambda: ([], []),
inputs=None,
outputs=[
chatbot,
history_chat
],
queue=False,
api_name="clear",
)
image.change(
fn=lambda: ([], []),
inputs=None,
outputs=[
chatbot,
history_chat
],
queue=False)
cancel_btn.click(
None, [], [],
cancels=[chat_event1, chat_event2]
)
examples = [["./examples/baklava.png", "How to make this pastry?"],["./examples/bee.png","Describe this image."]]
gr.Examples(examples=examples, inputs=[image, text_input, chat_inputs])
if __name__ == "__main__":
demo.queue(max_size=10).launch(debug=True) |