Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright 3D-Speaker (https://github.com/alibaba-damo-academy/3D-Speaker). All Rights Reserved. | |
| # Licensed under the Apache License, Version 2.0 (http://www.apache.org/licenses/LICENSE-2.0) | |
| """ Res2Net implementation is adapted from https://github.com/wenet-e2e/wespeaker. | |
| ERes2Net incorporates both local and global feature fusion techniques to improve the performance. | |
| The local feature fusion (LFF) fuses the features within one single residual block to extract the local signal. | |
| The global feature fusion (GFF) takes acoustic features of different scales as input to aggregate global signal. | |
| ERes2Net-huge is an upgraded version of ERes2Net that uses a larger number of parameters to achieve better | |
| recognition performance. Parameters expansion, baseWidth, and scale can be modified to obtain optimal performance. | |
| """ | |
| import pdb | |
| import torch | |
| import math | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| import pooling_layers as pooling_layers | |
| from fusion import AFF | |
| class ReLU(nn.Hardtanh): | |
| def __init__(self, inplace=False): | |
| super(ReLU, self).__init__(0, 20, inplace) | |
| def __repr__(self): | |
| inplace_str = 'inplace' if self.inplace else '' | |
| return self.__class__.__name__ + ' (' \ | |
| + inplace_str + ')' | |
| class BasicBlockERes2Net(nn.Module): | |
| expansion = 4 | |
| def __init__(self, in_planes, planes, stride=1, baseWidth=24, scale=3): | |
| super(BasicBlockERes2Net, self).__init__() | |
| width = int(math.floor(planes*(baseWidth/64.0))) | |
| self.conv1 = nn.Conv2d(in_planes, width*scale, kernel_size=1, stride=stride, bias=False) | |
| self.bn1 = nn.BatchNorm2d(width*scale) | |
| self.nums = scale | |
| convs=[] | |
| bns=[] | |
| for i in range(self.nums): | |
| convs.append(nn.Conv2d(width, width, kernel_size=3, padding=1, bias=False)) | |
| bns.append(nn.BatchNorm2d(width)) | |
| self.convs = nn.ModuleList(convs) | |
| self.bns = nn.ModuleList(bns) | |
| self.relu = ReLU(inplace=True) | |
| self.conv3 = nn.Conv2d(width*scale, planes*self.expansion, kernel_size=1, bias=False) | |
| self.bn3 = nn.BatchNorm2d(planes*self.expansion) | |
| self.shortcut = nn.Sequential() | |
| if stride != 1 or in_planes != self.expansion * planes: | |
| self.shortcut = nn.Sequential( | |
| nn.Conv2d(in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False), | |
| nn.BatchNorm2d(self.expansion * planes)) | |
| self.stride = stride | |
| self.width = width | |
| self.scale = scale | |
| def forward(self, x): | |
| residual = x | |
| out = self.conv1(x) | |
| out = self.bn1(out) | |
| out = self.relu(out) | |
| spx = torch.split(out,self.width,1) | |
| for i in range(self.nums): | |
| if i==0: | |
| sp = spx[i] | |
| else: | |
| sp = sp + spx[i] | |
| sp = self.convs[i](sp) | |
| sp = self.relu(self.bns[i](sp)) | |
| if i==0: | |
| out = sp | |
| else: | |
| out = torch.cat((out,sp),1) | |
| out = self.conv3(out) | |
| out = self.bn3(out) | |
| residual = self.shortcut(x) | |
| out += residual | |
| out = self.relu(out) | |
| return out | |
| class BasicBlockERes2Net_diff_AFF(nn.Module): | |
| expansion = 4 | |
| def __init__(self, in_planes, planes, stride=1, baseWidth=24, scale=3): | |
| super(BasicBlockERes2Net_diff_AFF, self).__init__() | |
| width = int(math.floor(planes*(baseWidth/64.0))) | |
| self.conv1 = nn.Conv2d(in_planes, width*scale, kernel_size=1, stride=stride, bias=False) | |
| self.bn1 = nn.BatchNorm2d(width*scale) | |
| self.nums = scale | |
| convs=[] | |
| fuse_models=[] | |
| bns=[] | |
| for i in range(self.nums): | |
| convs.append(nn.Conv2d(width, width, kernel_size=3, padding=1, bias=False)) | |
| bns.append(nn.BatchNorm2d(width)) | |
| for j in range(self.nums - 1): | |
| fuse_models.append(AFF(channels=width)) | |
| self.convs = nn.ModuleList(convs) | |
| self.bns = nn.ModuleList(bns) | |
| self.fuse_models = nn.ModuleList(fuse_models) | |
| self.relu = ReLU(inplace=True) | |
| self.conv3 = nn.Conv2d(width*scale, planes*self.expansion, kernel_size=1, bias=False) | |
| self.bn3 = nn.BatchNorm2d(planes*self.expansion) | |
| self.shortcut = nn.Sequential() | |
| if stride != 1 or in_planes != self.expansion * planes: | |
| self.shortcut = nn.Sequential( | |
| nn.Conv2d(in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False), | |
| nn.BatchNorm2d(self.expansion * planes)) | |
| self.stride = stride | |
| self.width = width | |
| self.scale = scale | |
| def forward(self, x): | |
| residual = x | |
| out = self.conv1(x) | |
| out = self.bn1(out) | |
| out = self.relu(out) | |
| spx = torch.split(out,self.width,1) | |
| for i in range(self.nums): | |
| if i==0: | |
| sp = spx[i] | |
| else: | |
| sp = self.fuse_models[i-1](sp, spx[i]) | |
| sp = self.convs[i](sp) | |
| sp = self.relu(self.bns[i](sp)) | |
| if i==0: | |
| out = sp | |
| else: | |
| out = torch.cat((out,sp),1) | |
| out = self.conv3(out) | |
| out = self.bn3(out) | |
| residual = self.shortcut(x) | |
| out += residual | |
| out = self.relu(out) | |
| return out | |
| class ERes2Net(nn.Module): | |
| def __init__(self, | |
| block=BasicBlockERes2Net, | |
| block_fuse=BasicBlockERes2Net_diff_AFF, | |
| num_blocks=[3, 4, 6, 3], | |
| m_channels=64, | |
| feat_dim=80, | |
| embedding_size=192, | |
| pooling_func='TSTP', | |
| two_emb_layer=False): | |
| super(ERes2Net, self).__init__() | |
| self.in_planes = m_channels | |
| self.feat_dim = feat_dim | |
| self.embedding_size = embedding_size | |
| self.stats_dim = int(feat_dim / 8) * m_channels * 8 | |
| self.two_emb_layer = two_emb_layer | |
| self.conv1 = nn.Conv2d(1, m_channels, kernel_size=3, stride=1, padding=1, bias=False) | |
| self.bn1 = nn.BatchNorm2d(m_channels) | |
| self.layer1 = self._make_layer(block, m_channels, num_blocks[0], stride=1) | |
| self.layer2 = self._make_layer(block, m_channels * 2, num_blocks[1], stride=2) | |
| self.layer3 = self._make_layer(block_fuse, m_channels * 4, num_blocks[2], stride=2) | |
| self.layer4 = self._make_layer(block_fuse, m_channels * 8, num_blocks[3], stride=2) | |
| self.layer1_downsample = nn.Conv2d(m_channels * 4, m_channels * 8, kernel_size=3, padding=1, stride=2, bias=False) | |
| self.layer2_downsample = nn.Conv2d(m_channels * 8, m_channels * 16, kernel_size=3, padding=1, stride=2, bias=False) | |
| self.layer3_downsample = nn.Conv2d(m_channels * 16, m_channels * 32, kernel_size=3, padding=1, stride=2, bias=False) | |
| self.fuse_mode12 = AFF(channels=m_channels * 8) | |
| self.fuse_mode123 = AFF(channels=m_channels * 16) | |
| self.fuse_mode1234 = AFF(channels=m_channels * 32) | |
| self.n_stats = 1 if pooling_func == 'TAP' or pooling_func == "TSDP" else 2 | |
| self.pool = getattr(pooling_layers, pooling_func)( | |
| in_dim=self.stats_dim * block.expansion) | |
| self.seg_1 = nn.Linear(self.stats_dim * block.expansion * self.n_stats, embedding_size) | |
| if self.two_emb_layer: | |
| self.seg_bn_1 = nn.BatchNorm1d(embedding_size, affine=False) | |
| self.seg_2 = nn.Linear(embedding_size, embedding_size) | |
| else: | |
| self.seg_bn_1 = nn.Identity() | |
| self.seg_2 = nn.Identity() | |
| def _make_layer(self, block, planes, num_blocks, stride): | |
| strides = [stride] + [1] * (num_blocks - 1) | |
| layers = [] | |
| for stride in strides: | |
| layers.append(block(self.in_planes, planes, stride)) | |
| self.in_planes = planes * block.expansion | |
| return nn.Sequential(*layers) | |
| def forward(self, x): | |
| x = x.permute(0, 2, 1) # (B,T,F) => (B,F,T) | |
| x = x.unsqueeze_(1) | |
| out = F.relu(self.bn1(self.conv1(x))) | |
| out1 = self.layer1(out) | |
| out2 = self.layer2(out1) | |
| out1_downsample = self.layer1_downsample(out1) | |
| fuse_out12 = self.fuse_mode12(out2, out1_downsample) | |
| out3 = self.layer3(out2) | |
| fuse_out12_downsample = self.layer2_downsample(fuse_out12) | |
| fuse_out123 = self.fuse_mode123(out3, fuse_out12_downsample) | |
| out4 = self.layer4(out3) | |
| fuse_out123_downsample = self.layer3_downsample(fuse_out123) | |
| fuse_out1234 = self.fuse_mode1234(out4, fuse_out123_downsample) | |
| stats = self.pool(fuse_out1234) | |
| embed_a = self.seg_1(stats) | |
| if self.two_emb_layer: | |
| out = F.relu(embed_a) | |
| out = self.seg_bn_1(out) | |
| embed_b = self.seg_2(out) | |
| return embed_b | |
| else: | |
| return embed_a | |
| def forward2(self, x,if_mean): | |
| x = x.permute(0, 2, 1) # (B,T,F) => (B,F,T) | |
| x = x.unsqueeze_(1) | |
| out = F.relu(self.bn1(self.conv1(x))) | |
| out1 = self.layer1(out) | |
| out2 = self.layer2(out1) | |
| out1_downsample = self.layer1_downsample(out1) | |
| fuse_out12 = self.fuse_mode12(out2, out1_downsample) | |
| out3 = self.layer3(out2) | |
| fuse_out12_downsample = self.layer2_downsample(fuse_out12) | |
| fuse_out123 = self.fuse_mode123(out3, fuse_out12_downsample) | |
| out4 = self.layer4(out3) | |
| fuse_out123_downsample = self.layer3_downsample(fuse_out123) | |
| fuse_out1234 = self.fuse_mode1234(out4, fuse_out123_downsample).flatten(start_dim=1,end_dim=2)#bs,20480,T | |
| if(if_mean==False): | |
| mean=fuse_out1234[0].transpose(1,0)#(T,20480),bs=T | |
| else: | |
| mean = fuse_out1234.mean(2)#bs,20480 | |
| mean_std=torch.cat([mean,torch.zeros_like(mean)],1) | |
| return self.seg_1(mean_std)#(T,192) | |
| # stats = self.pool(fuse_out1234) | |
| # if self.two_emb_layer: | |
| # out = F.relu(embed_a) | |
| # out = self.seg_bn_1(out) | |
| # embed_b = self.seg_2(out) | |
| # return embed_b | |
| # else: | |
| # return embed_a | |
| def forward3(self, x): | |
| x = x.permute(0, 2, 1) # (B,T,F) => (B,F,T) | |
| x = x.unsqueeze_(1) | |
| out = F.relu(self.bn1(self.conv1(x))) | |
| out1 = self.layer1(out) | |
| out2 = self.layer2(out1) | |
| out1_downsample = self.layer1_downsample(out1) | |
| fuse_out12 = self.fuse_mode12(out2, out1_downsample) | |
| out3 = self.layer3(out2) | |
| fuse_out12_downsample = self.layer2_downsample(fuse_out12) | |
| fuse_out123 = self.fuse_mode123(out3, fuse_out12_downsample) | |
| out4 = self.layer4(out3) | |
| fuse_out123_downsample = self.layer3_downsample(fuse_out123) | |
| fuse_out1234 = self.fuse_mode1234(out4, fuse_out123_downsample).flatten(start_dim=1,end_dim=2).mean(-1) | |
| return fuse_out1234 | |
| # print(fuse_out1234.shape) | |
| # print(fuse_out1234.flatten(start_dim=1,end_dim=2).shape) | |
| # pdb.set_trace() | |