Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ | |
| Credits | |
| This code is modified from https://github.com/GitYCC/g2pW | |
| """ | |
| import os | |
| import re | |
| def wordize_and_map(text: str): | |
| words = [] | |
| index_map_from_text_to_word = [] | |
| index_map_from_word_to_text = [] | |
| while len(text) > 0: | |
| match_space = re.match(r'^ +', text) | |
| if match_space: | |
| space_str = match_space.group(0) | |
| index_map_from_text_to_word += [None] * len(space_str) | |
| text = text[len(space_str):] | |
| continue | |
| match_en = re.match(r'^[a-zA-Z0-9]+', text) | |
| if match_en: | |
| en_word = match_en.group(0) | |
| word_start_pos = len(index_map_from_text_to_word) | |
| word_end_pos = word_start_pos + len(en_word) | |
| index_map_from_word_to_text.append((word_start_pos, word_end_pos)) | |
| index_map_from_text_to_word += [len(words)] * len(en_word) | |
| words.append(en_word) | |
| text = text[len(en_word):] | |
| else: | |
| word_start_pos = len(index_map_from_text_to_word) | |
| word_end_pos = word_start_pos + 1 | |
| index_map_from_word_to_text.append((word_start_pos, word_end_pos)) | |
| index_map_from_text_to_word += [len(words)] | |
| words.append(text[0]) | |
| text = text[1:] | |
| return words, index_map_from_text_to_word, index_map_from_word_to_text | |
| def tokenize_and_map(tokenizer, text: str): | |
| words, text2word, word2text = wordize_and_map(text=text) | |
| tokens = [] | |
| index_map_from_token_to_text = [] | |
| for word, (word_start, word_end) in zip(words, word2text): | |
| word_tokens = tokenizer.tokenize(word) | |
| if len(word_tokens) == 0 or word_tokens == ['[UNK]']: | |
| index_map_from_token_to_text.append((word_start, word_end)) | |
| tokens.append('[UNK]') | |
| else: | |
| current_word_start = word_start | |
| for word_token in word_tokens: | |
| word_token_len = len(re.sub(r'^##', '', word_token)) | |
| index_map_from_token_to_text.append( | |
| (current_word_start, current_word_start + word_token_len)) | |
| current_word_start = current_word_start + word_token_len | |
| tokens.append(word_token) | |
| index_map_from_text_to_token = text2word | |
| for i, (token_start, token_end) in enumerate(index_map_from_token_to_text): | |
| for token_pos in range(token_start, token_end): | |
| index_map_from_text_to_token[token_pos] = i | |
| return tokens, index_map_from_text_to_token, index_map_from_token_to_text | |
| def _load_config(config_path: os.PathLike): | |
| import importlib.util | |
| spec = importlib.util.spec_from_file_location('__init__', config_path) | |
| config = importlib.util.module_from_spec(spec) | |
| spec.loader.exec_module(config) | |
| return config | |
| default_config_dict = { | |
| 'manual_seed': 1313, | |
| 'model_source': 'bert-base-chinese', | |
| 'window_size': 32, | |
| 'num_workers': 2, | |
| 'use_mask': True, | |
| 'use_char_phoneme': False, | |
| 'use_conditional': True, | |
| 'param_conditional': { | |
| 'affect_location': 'softmax', | |
| 'bias': True, | |
| 'char-linear': True, | |
| 'pos-linear': False, | |
| 'char+pos-second': True, | |
| 'char+pos-second_lowrank': False, | |
| 'lowrank_size': 0, | |
| 'char+pos-second_fm': False, | |
| 'fm_size': 0, | |
| 'fix_mode': None, | |
| 'count_json': 'train.count.json' | |
| }, | |
| 'lr': 5e-5, | |
| 'val_interval': 200, | |
| 'num_iter': 10000, | |
| 'use_focal': False, | |
| 'param_focal': { | |
| 'alpha': 0.0, | |
| 'gamma': 0.7 | |
| }, | |
| 'use_pos': True, | |
| 'param_pos ': { | |
| 'weight': 0.1, | |
| 'pos_joint_training': True, | |
| 'train_pos_path': 'train.pos', | |
| 'valid_pos_path': 'dev.pos', | |
| 'test_pos_path': 'test.pos' | |
| } | |
| } | |
| def load_config(config_path: os.PathLike, use_default: bool=False): | |
| config = _load_config(config_path) | |
| if use_default: | |
| for attr, val in default_config_dict.items(): | |
| if not hasattr(config, attr): | |
| setattr(config, attr, val) | |
| elif isinstance(val, dict): | |
| d = getattr(config, attr) | |
| for dict_k, dict_v in val.items(): | |
| if dict_k not in d: | |
| d[dict_k] = dict_v | |
| return config | |