Spaces:
Running
on
Zero
Running
on
Zero
Initialize the application (#1)
Browse files- Add VideoLLaMA3 interface (a0cd639574d265b1176acb70fc84c042515c09cc)
- Add requirements (7be3edf4daf24d4f11a627437d1a74c38b0f5d95)
- Add examples (55baa3214bc2c65e24152624998a466f96db7947)
Co-authored-by: Kehan Li <[email protected]>
- app.py +161 -49
- examples/desert.jpg +0 -0
- packages.txt +1 -0
- requirements.txt +9 -1
app.py
CHANGED
|
@@ -1,64 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
-
|
|
|
|
|
|
|
|
|
|
| 3 |
|
|
|
|
| 4 |
"""
|
| 5 |
-
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
| 6 |
-
"""
|
| 7 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
| 8 |
|
| 9 |
|
| 10 |
-
|
| 11 |
-
message,
|
| 12 |
-
history: list[tuple[str, str]],
|
| 13 |
-
system_message,
|
| 14 |
-
max_tokens,
|
| 15 |
-
temperature,
|
| 16 |
-
top_p,
|
| 17 |
-
):
|
| 18 |
-
messages = [{"role": "system", "content": system_message}]
|
| 19 |
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
-
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
temperature=temperature,
|
| 35 |
-
top_p=top_p,
|
| 36 |
-
):
|
| 37 |
-
token = message.choices[0].delta.content
|
| 38 |
|
| 39 |
-
|
| 40 |
-
|
| 41 |
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
|
| 62 |
|
| 63 |
if __name__ == "__main__":
|
| 64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import os.path as osp
|
| 3 |
+
|
| 4 |
import gradio as gr
|
| 5 |
+
import spaces
|
| 6 |
+
import torch
|
| 7 |
+
from threading import Thread
|
| 8 |
+
from transformers import AutoModelForCausalLM, AutoProcessor, TextIteratorStreamer
|
| 9 |
|
| 10 |
+
HEADER = """
|
| 11 |
"""
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
|
| 14 |
+
class VideoLLaMA3GradioInterface(object):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
+
def __init__(self, model_name, device="cpu", example_dir=None, **server_kwargs):
|
| 17 |
+
self.device = device
|
| 18 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
| 19 |
+
model_name,
|
| 20 |
+
trust_remote_code=True,
|
| 21 |
+
torch_dtype=torch.bfloat16,
|
| 22 |
+
attn_implementation="flash_attention_2",
|
| 23 |
+
)
|
| 24 |
+
self.model.to(self.device)
|
| 25 |
+
self.processor = AutoProcessor.from_pretrained(model_name, trust_remote_code=True)
|
| 26 |
|
| 27 |
+
self.server_kwargs = server_kwargs
|
| 28 |
+
|
| 29 |
+
self.image_formats = ("png", "jpg", "jpeg")
|
| 30 |
+
self.video_formats = ("mp4",)
|
| 31 |
|
| 32 |
+
image_examples, video_examples = [], []
|
| 33 |
+
if example_dir is not None:
|
| 34 |
+
example_files = [
|
| 35 |
+
osp.join(example_dir, f) for f in os.listdir(example_dir)
|
| 36 |
+
]
|
| 37 |
+
for example_file in example_files:
|
| 38 |
+
if example_file.endswith(self.image_formats):
|
| 39 |
+
image_examples.append([example_file])
|
| 40 |
+
elif example_file.endswith(self.video_formats):
|
| 41 |
+
video_examples.append([example_file])
|
| 42 |
|
| 43 |
+
with gr.Blocks() as self.interface:
|
| 44 |
+
gr.Markdown(HEADER)
|
| 45 |
+
with gr.Row():
|
| 46 |
+
chatbot = gr.Chatbot(type="messages", elem_id="chatbot", height=710)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
|
| 48 |
+
with gr.Column():
|
| 49 |
+
with gr.Tab(label="Input"):
|
| 50 |
|
| 51 |
+
with gr.Row():
|
| 52 |
+
input_video = gr.Video(sources=["upload"], label="Upload Video")
|
| 53 |
+
input_image = gr.Image(sources=["upload"], type="filepath", label="Upload Image")
|
| 54 |
|
| 55 |
+
if len(image_examples):
|
| 56 |
+
gr.Examples(image_examples, inputs=[input_image], label="Example Images")
|
| 57 |
+
if len(video_examples):
|
| 58 |
+
gr.Examples(video_examples, inputs=[input_video], label="Example Videos")
|
| 59 |
+
|
| 60 |
+
input_text = gr.Textbox(label="Input Text", placeholder="Type your message here and press enter to submit")
|
| 61 |
+
|
| 62 |
+
submit_button = gr.Button("Generate")
|
| 63 |
+
|
| 64 |
+
with gr.Tab(label="Configure"):
|
| 65 |
+
with gr.Accordion("Generation Config", open=True):
|
| 66 |
+
do_sample = gr.Checkbox(value=True, label="Do Sample")
|
| 67 |
+
temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.2, label="Temperature")
|
| 68 |
+
top_p = gr.Slider(minimum=0.0, maximum=1.0, value=0.9, label="Top P")
|
| 69 |
+
max_new_tokens = gr.Slider(minimum=0, maximum=4096, value=2048, step=1, label="Max New Tokens")
|
| 70 |
+
|
| 71 |
+
with gr.Accordion("Video Config", open=True):
|
| 72 |
+
fps = gr.Slider(minimum=0.0, maximum=10.0, value=1, label="FPS")
|
| 73 |
+
max_frames = gr.Slider(minimum=0, maximum=256, value=180, step=1, label="Max Frames")
|
| 74 |
+
|
| 75 |
+
input_video.change(self._on_video_upload, [chatbot, input_video], [chatbot, input_video])
|
| 76 |
+
input_image.change(self._on_image_upload, [chatbot, input_image], [chatbot, input_image])
|
| 77 |
+
input_text.submit(self._on_text_submit, [chatbot, input_text], [chatbot, input_text])
|
| 78 |
+
submit_button.click(
|
| 79 |
+
self._predict,
|
| 80 |
+
[
|
| 81 |
+
chatbot, input_text, do_sample, temperature, top_p, max_new_tokens,
|
| 82 |
+
fps, max_frames
|
| 83 |
+
],
|
| 84 |
+
[chatbot],
|
| 85 |
+
)
|
| 86 |
+
|
| 87 |
+
def _on_video_upload(self, messages, video):
|
| 88 |
+
if video is not None:
|
| 89 |
+
# messages.append({"role": "user", "content": gr.Video(video)})
|
| 90 |
+
messages.append({"role": "user", "content": {"path": video}})
|
| 91 |
+
return messages, None
|
| 92 |
+
|
| 93 |
+
def _on_image_upload(self, messages, image):
|
| 94 |
+
if image is not None:
|
| 95 |
+
# messages.append({"role": "user", "content": gr.Image(image)})
|
| 96 |
+
messages.append({"role": "user", "content": {"path": image}})
|
| 97 |
+
return messages, None
|
| 98 |
+
|
| 99 |
+
def _on_text_submit(self, messages, text):
|
| 100 |
+
messages.append({"role": "user", "content": text})
|
| 101 |
+
return messages, ""
|
| 102 |
+
|
| 103 |
+
@spaces.GPU(duration=120)
|
| 104 |
+
def _predict(self, messages, input_text, do_sample, temperature, top_p, max_new_tokens,
|
| 105 |
+
fps, max_frames):
|
| 106 |
+
if len(input_text) > 0:
|
| 107 |
+
messages.append({"role": "user", "content": input_text})
|
| 108 |
+
new_messages = []
|
| 109 |
+
contents = []
|
| 110 |
+
for message in messages:
|
| 111 |
+
if message["role"] == "assistant":
|
| 112 |
+
if len(contents):
|
| 113 |
+
new_messages.append({"role": "user", "content": contents})
|
| 114 |
+
contents = []
|
| 115 |
+
new_messages.append(message)
|
| 116 |
+
elif message["role"] == "user":
|
| 117 |
+
if isinstance(message["content"], str):
|
| 118 |
+
contents.append(message["content"])
|
| 119 |
+
else:
|
| 120 |
+
media_path = message["content"][0]
|
| 121 |
+
if media_path.endswith(self.video_formats):
|
| 122 |
+
contents.append({"type": "video", "video": {"video_path": media_path, "fps": fps, "max_frames": max_frames}})
|
| 123 |
+
elif media_path.endswith(self.image_formats):
|
| 124 |
+
contents.append({"type": "image", "image": {"image_path": media_path}})
|
| 125 |
+
else:
|
| 126 |
+
raise ValueError(f"Unsupported media type: {media_path}")
|
| 127 |
+
|
| 128 |
+
if len(contents):
|
| 129 |
+
new_messages.append({"role": "user", "content": contents})
|
| 130 |
+
|
| 131 |
+
if len(new_messages) == 0 or new_messages[-1]["role"] != "user":
|
| 132 |
+
return messages
|
| 133 |
+
|
| 134 |
+
generation_config = {
|
| 135 |
+
"do_sample": do_sample,
|
| 136 |
+
"temperature": temperature,
|
| 137 |
+
"top_p": top_p,
|
| 138 |
+
"max_new_tokens": max_new_tokens
|
| 139 |
+
}
|
| 140 |
+
|
| 141 |
+
inputs = self.processor(
|
| 142 |
+
conversation=new_messages,
|
| 143 |
+
add_system_prompt=True,
|
| 144 |
+
add_generation_prompt=True,
|
| 145 |
+
return_tensors="pt"
|
| 146 |
+
)
|
| 147 |
+
inputs = {k: v.to(self.device) if isinstance(v, torch.Tensor) else v for k, v in inputs.items()}
|
| 148 |
+
if "pixel_values" in inputs:
|
| 149 |
+
inputs["pixel_values"] = inputs["pixel_values"].to(torch.bfloat16)
|
| 150 |
+
|
| 151 |
+
streamer = TextIteratorStreamer(self.processor.tokenizer, skip_prompt=True, skip_special_tokens=True)
|
| 152 |
+
generation_kwargs = {
|
| 153 |
+
**inputs,
|
| 154 |
+
**generation_config,
|
| 155 |
+
"streamer": streamer,
|
| 156 |
+
}
|
| 157 |
+
|
| 158 |
+
thread = Thread(target=self.model.generate, kwargs=generation_kwargs)
|
| 159 |
+
thread.start()
|
| 160 |
+
|
| 161 |
+
messages.append({"role": "assistant", "content": ""})
|
| 162 |
+
for token in streamer:
|
| 163 |
+
messages[-1]['content'] += token
|
| 164 |
+
yield messages
|
| 165 |
+
|
| 166 |
+
def launch(self):
|
| 167 |
+
self.interface.launch(**self.server_kwargs)
|
| 168 |
|
| 169 |
|
| 170 |
if __name__ == "__main__":
|
| 171 |
+
interface = VideoLLaMA3GradioInterface(
|
| 172 |
+
model_name="DAMO-NLP-SG/VideoLLaMA3-7B",
|
| 173 |
+
device="cuda",
|
| 174 |
+
example_dir="./examples",
|
| 175 |
+
)
|
| 176 |
+
interface.launch()
|
examples/desert.jpg
ADDED
|
packages.txt
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
ffmpeg
|
requirements.txt
CHANGED
|
@@ -1 +1,9 @@
|
|
| 1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
--extra-index-url https://download.pytorch.org/whl/cu121
|
| 2 |
+
torch==2.4.0
|
| 3 |
+
torchvision==0.19.0
|
| 4 |
+
transformers==4.46.3
|
| 5 |
+
spaces
|
| 6 |
+
decord
|
| 7 |
+
ffmpeg-python
|
| 8 |
+
imageio
|
| 9 |
+
opencv-python
|